18p-D8-13

Ga₂O₃ and Al₂O₃ hybrid passivation for improving of HfO₂/InGaAs MIS characteristics 産総研 連携研究体グリーン・ナノエレクトロニクスセンター °ジェバスワン ウィパコーン,前田辰郎,宮田典幸,小田穰,入沢寿史,手塚勉,安田哲二 GNC-AIST,[°]W. Jevasuwan, T. Maeda, N. Miyata, M. Oda, T. Irisawa, T. Tezuka, and T. Yasuda E-mail: w-jevasuwan@aist.go.jp

HfO₂ is promising as one of the higher-k materials for next-generation gate stack while III-V compound semiconductors such as InGaAs have considerable potential as n-channel material for high performance MISFETs. Previous researches reported several techniques for improving of HfO2/InGaAs MIS interface properties such as Al₂O₃ passivation [1], ALD temperature control [2], and Ga₂O₃ passivation by annealing process [3]. From our experiments, ultrathin Ga₂O₃-ALD passivation showed self cleaning of TMG on InGaAs and was very effective to improve Al₂O₃/InGaAs MIS structure [4]. Therefore in this paper, Ga₂O₃-ALD passivation was applied to investigate the effect on HfO2/InGaAs MIS interface and Ga2O3 thickness was more controlled by hybrid Ga₂O₃ and Al₂O₃-ALD passivation.

MIS capacitors were fabricated on n-InGaAs(100) epitaxial wafers with doping concentration of 3 x 10^{16} cm⁻³. Prior to ALD, all surfaces were treated in NH₄OH solution for 1 min and rinsed with deionized water. Then, 20-cycle Ga₂O₃ ALD, and hybrid 20-cycle Ga₂O₃ and 2-cycle Al₂O ALD were performed using Al(CH₃)₃, Ga(CH₃)₃, and H₂O as precursors at 250 °C to investigate the effect of these passivation layers. After that, 10-nm-thick HfO2 gate insulator films were consecutively deposited using [Hf(N(CH₃)₂)₄]₂ and H₂O at same temperature. PDA was done in vacuum at 300 °C for 2 min. Au and Cr/Au were used as the gate electrode and back contact, respectively. Finally, PMA was performed in Ar at 350 °C for 2 min.

Figure 1 shows C-V characteristics of Au/HfO₂(10 nm)/InGaAs MIS structure without passivation, with Ga_2O_3 passivation, and hybrid Ga_2O_3 and Al_2O_3 passivation layers. 20-cycle Ga_2O_3 passivation reduced capacitance around V_{fb} and capacitance under the negative bias. Flat band voltage (V_{fb}) was shifted to negative but larger hysteresis was observed, compared to control sample. These results indicated increasing of negative fixed charges inside Ga_2O_3 passivation film. To reduce Ga_2O_3 film thickness and control atomic arrangement at the interface, 2-cycle Al_2O_3 passivation was supplied. From XPS

measurement, Ga_2O_3 coverage was reduced from ~0.3 nm to ~0.2 nm and As oxide could not be detected after following with Al_2O_3 passivation. Hybrid passivation could more reduce frequency dispersion around $V_{\rm fb}$ and under accumulation, and gave negative shift of $V_{\rm fb}$, compared to only Ga_2O_3 passivation.

Figure 2 shows interface trap density (D_{it}), evaluated by high-low frequency method. It is clear that $D_{it}(min)$ was most reduced by hybrid 20-cycle Ga_2O_3 and 2-cyle Al_2O_3 passivation for HfO₂/InGaAs MIS structure. Minimum D_{it} as low as 3.83×10^{12} cm⁻²eV⁻¹ was achieved. This study is granted by JSPS through FIRST program initiated by CSTP.

[1] R. Suzuki, *et al.*, APL 100, 132906 (2012); [2] R.
Suzuki, *et al.*, APL 112, 084103 (2012); [3] Oda, *et al.*, present in ISDRS 2013; [4] W. Jevasuwan, *et al.*, APEX 7, 011201 (2014).

Fig. 1 C-V characteristics of Au/HfO₂(10 nm)/InGaAs MIS structure (a) without passivation, (b) with 20-cycle Ga_2O_3 passivation, and (d) with hybrid passivation of 20-cycle Ga_2O_3 and 2-cycle Al_2O_3 .

Fig. 2 Comparison of interface trap densities (D_{it}) , evaluated by high-low frequency method, between Ga_2O_3 and hybrid passivations.