18p-D8-14

低界面準位と sub-nm CET を有する La₂O₃/In_{0.53}Ga_{0.47}As ゲートスタックの実現 Low D_{it} La₂O₃/In_{0.53}Ga_{0.47}As Gate Stack scaled to sub-nm CET

東エ大フロンティア研¹,東工大総理工² ⁰ハサンザデ ダリューシュ¹,大嶺洋¹,角嶋邦之², 片岡好則²,西山彰²,杉井信之²,若林整²,筒井一生²,名取研二¹,岩井洋¹

Tokyo Tech. FRC¹, Tokyo Tech. IGSSE² °D. Hassan Zadeh¹, H. Oomine¹, K. Kakushima², Y.

Kataoka², A. Nishiyama², N. Sugii², H. Wakabayashi², K. Tsutsui², K. Natori¹, , H. Iwai¹

E-mail: zade.d.aa@m.titech.ac.jp

[Introduction] Integration of high-mobility channels such as InGaAs is envisaged for beyond 10-nm node devices [1]. However, fabrication of high quality high-k/III-V interface with low interface trap density remains a key issue. Overwhelming majority of InGaAs device demonstrations use Al₂O₃ as gate dielectric, which benefits from good interface properties. Consequently scaling of InGaAs-based gate stacks has been limited due to low k-value (~9) of Al₂O₃. However, high Cox values in quasi-ballistic regime of 10-nm node and beyond is required to minimize the effect of high semiconductor capacitance and improve gate controllability [2]. In this study, we have demonstrated a scalable La₂O₃/InGaAs gate stack with La₂O₃ deposited either by EB or ALD methods with equal interface quality, thanks to the formation of an amorphous interfacial layer at the La₂O₃/InGaAs interface.

[Experiments] La₂O₃-gated devices were fabricated on *n*-In_{0.53}Ga_{0.47}As substrates (dopant: 1.0×10^{16} cm⁻³). Substrates were first, treated by HF and (NH₄)₂S (6%) solution prior to La₂O₃ deposition. ALD-La₂O₃ films were grown from precursors lanthanum tris(isopropylcyclopentadienyl) and H₂O at various deposition temperatures. Bi-layer TiN/W metal gates were in-situ deposited by RF sputtering. A gate last scheme was used to fabricate InGaAs MOSFETs on *p*-In_{0.53}Ga_{0.47}As (dopant: 1.8×10^{17} cm⁻³) with a similar gate stack process flow to capacitors.

[Results] Conductance measurements were carried out to evaluate the interface trap density (D_{it}) at La₂O₃/InGaAs interface. The results compared to other recently reported high-k materials is shown in Fig. 1 (a). Small D_{it} on the order of 10^{11} (cm⁻² eV⁻¹) is achieved for La₂O₃/InGaAs capacitors even at sub-nm CET values. The similarity of results between deposition methods can be attributed to the presence of interfacial layer in the form of LaInGaO_x which is formed reactively at InGaAs interface. InGaAs MOSFET operation with ALD-La₂O₃ as gate dielectric and Ni as metal S/D is demonstrated in Fig. 1(b). Mobility exceeding that of Si-universal is achieved for a gate stack with CET= 1.1 nm.

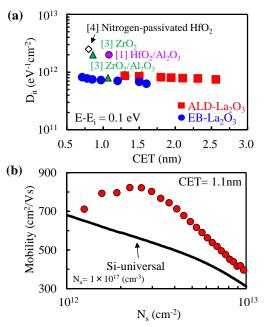


Fig.1 (a) D_{it} dependence on CET for La₂O₃/InGaAs and (b) effective electron mobility of nMOSFETs measured by split C-V.

[References]

 S. Takagi et al., IEDM 505(2012). [2] M. Fischetti et al., IEEE Trans. Electron. Devices, 54, 2116(2007).
V. Chobpattana et al., Appl. Phys. Lett. 102, 022907(2013). [4] J. Huang et al., IEDM 335(2009).

[Acknowledgement] This work was granted by JSPS through FIRST program initiated by the CSTP.