18p-E10-10

スパッタ法で成膜したナノ結晶酸化物半導体への 電子線照射効果の調査(2)

Investigation of Electron Beam Induced Effects on

Nano Crystalline Oxide Semiconductor Deposited by Sputtering (2)

株式会社半導体エネルギー研究所

○大力 浩二, 太田 将志, 高橋 正弘, 廣橋 拓也, 山﨑 舜平

Semiconductor Energy Laboratory Co., Ltd., Japan

K. Dairiki, M. Oota, M. Takahashi, T. Hirohashi and S. Yamazaki

E-mail: kd0411@sel.co.jp

DC スパッタで成膜した非晶質アルミナは電子線 照射で結晶化し易いことが知られており、加速電圧 200 [kV]での TEM 観察時に 13.0 [A/cm²] (= 8.1E+5 [e-/nm²s])の電子線照射誘起結晶化が報告されて いる[1]。室温 RF スパッタ成膜の InGaZnO 膜に関し ても、加速電圧 300 [kV]、高電流密度条件の電子線 照射誘起結晶化の報告例がある[2]。膜質と電子線 照射条件によって、InGaZnO 膜の電子線照射効果 がどのように異なるのかに関して調査した。

多結晶 InGaZnO₄ターゲットを用いた DC マグネト ロンスパッタ法にて、InGaZnO 膜を室温成膜した。そ の他の成膜条件は、0.4 [Pa]、500 [W]、O₂ 流量 45 [sccm]である。TEM 加速電圧は、電子線照射による InGaZnO 膜の結晶化の報告があった 300 [kV]に固 定した。標準の TEM 観察条件は、電子ビーム照射 領域 400nm ϕ 、電子電流密度 7.5E+4 [e-/nm²s]で、 3分以内で測定している。電子線の過剰照射条件と して、電子ビーム照射領域 130nm ϕ 、電子電流密度 1.5E+6 [e-/nm²s]にて 10 分間の照射も行った。実験 シーケンスは、TEM 観察3分(図(a))→400nm ϕ 電子 線照射10 分→TEM 観察3分(図(b))→130nm ϕ 電子 線強調照射 10 分→TEM 観察3分(図(c))となる。

450℃アニール後のnc-InGaZnO 膜に 300kV の電 子線を照射した場合は、電子線強調照射 10 分後で も TEM 像から電子線照射誘起結晶化に起因する変 化は確認されなかった。as depo.の InGaZnO 膜に 300kV の電子線を照射した場合も、通常条件の電子 線照射では TEM 観察後(図(a))に 10 分の電子線照 射(400nm ϕ)を行い、その後 TEM 観察(図(b))を行っ ても、TEM 像から電子線照射誘起結晶化に起因す る変化は確認されなかった。更に追加して10分の過 剰電子線照射(130nm ϕ)を行い、その後 TEM 観察 (図(c))を行ったところ、電子線照射により、結晶性が 高くなる傾向が確認された。すなわち、短時間の TEM 観察では InGaZnO 膜の結晶性は変化しないが、 電子線照射条件と膜質によっては結晶性が変化す ることが判明した。室温成膜の as depo. InGaZnO 膜 は電子線照射で変化し易く、アニール後の InGaZnO 膜に比べて安定性が乏しいことがわかった。

これらの結果から、nc-InGaZnO にて信頼性の高 いデバイスグレードの膜質を得るためには、アニー ルプロセスが必要であることがわかった。また、 InGaZnO 膜の膜質を議論する場合、as depo.の膜質 ではなく、実際の量産プロセスで用いられる加熱処 理後の膜質を議論する必要がある。

J. Murray et al.: Material Letters **74** (2012) 12–15
T. Kamiya et al.: Proc. IDW'13, pp. 280–281 (2013)

図. DC マグネトロンスパッタにて室温成膜した as depo. の InGaZnO 膜に対する 電子線照射前(a),10分の電子線照射後(b),10分の過剰電子線照射後のHR-TEM像(加速電圧300 kV)