18p-E10-9

スパッタ法で成膜したナノ結晶酸化物半導体への 電子線照射効果の調査(1)

Investigation of Electron Beam Induced Effects on

Nano Crystalline Oxide Semiconductor Deposited by Sputtering (1) 株式会社半導体エネルギー研究所

矢野 路子, 髙橋 絵里香, 大力 浩二, 高橋 正弘, 廣橋 拓也, 山﨑 舜平

Semiconductor Energy Laboratory Co., Ltd., Japan

M. Yano, E. Takahashi, K. Dairiki, M. Takahashi, T. Hirohashi and S. Yamazaki

E-mail: yano@sel.co.jp

我々は、InGaZnO 膜中のナノ結晶(nc)を、電子ビ ーム径 1 nm φ の極微電子線回折(NBED)法にて確 認している[1]。また、加速電圧 200 [kV]の NBED 測 定結果から、nc-InGaZnO 膜の存在を報告している [2]。他方、室温 RF スパッタ成膜の InGaZnO 膜では、 加速電圧 300 [kV]、高電流密度条件での、TEM 電 子線照射による結晶化が観察されたとの報告例があ る[3]。そこで、我々が観察した nc-InGaZnO が、電子 線照射で形成された結晶なのか、NBED 測定前から 存在する結晶なのか、検証実験を行った。

今回の報告では、これまでの報告と同様に、多結 晶 InGaZnO₄ターゲットを用いた DC マグネトロンスパ ッタで、InGaZnO 膜を室温成膜した。その他の成膜 条件は、0.4 [Pa]、500 [W]、O₂流量 45 [sccm]である。 TEM 加速電圧は 200kV に固定した。標準の NBED 測定時間は8秒としたが、電子線照射効果を強調す るために、1 分間の NBED 強調照射前後にて、TEM 像および NBED パターンに変化があるかどうかを確 認した。実験シーケンスは、TEM 観察3分(図(a)) → NBED 測定 8 秒(図(b))→NBED 強調照射 60 秒→ NBED 測定8秒(図(c))→TEM 観察3分(図(d))となる。

まず、NBED 照射前後の TEM 像(図(a), (d))からは 結晶化の進行に起因する変化は確認されなかった。 更に、図(b)に示すように、3 分の TEM 観察後の 8 秒 の NBED 測定で得られた NBED パターンには、 InGaZnO 結晶起因と推測される多数の回折スポット が観察された。電子線照射前後の NBED パターン (図(b), (c))の回折スポット数および輝度は同程度で あり、電子線照射によって nc-InGaZnO 膜の結晶化 が進行していないことが確認された。このことから、 nc-InGaZnO はスパッタ成膜時に形成されたと考えら れる。市販製品の InGaZnO-FET 活性層に対しても 同様の検証を行い、スパッタ成膜時に形成されたと 推測される nc-InGaZnO の存在を確認した。

K. Dairiki et al.: 2013 Spring Meeting of Jpn. Soc.
Appl. Phys. 29p-G19-3, 4, 5 (2013)

- [2] S. Ito et al.: AMFPD'13 Tech. Dig., pp154–155 (2013)
- [3] T. Kamiya et al.: Proc. IDW'13, pp. 280–281 (2013)

1.4×10⁵ e⁻/(nm²s)
2.0×10⁷ e⁻/(nm²s)
2.0×10⁷ e⁻/(nm²s)
1.4×10⁵ e⁻/(nm²s)
図.DC マグネトロンスパッタにて室温成膜した InGaZn0 膜に対する
NBED 照射前(a),後(d)の TEM 像:電子線照射密度 1.7e+9 [e-/nm²](8 秒+60 秒+8 秒)
および NBED 照射前(b),後(c)の NBED パターン:電子線照射密度 1.3e+9 [e-/nm²](60 秒)の
(加速電圧 200 kV, NBED プローブ径 1nm, 各図の下に TEM および NBED 測定時の電流密度を示す。)