18p-E14-4

先鋭バンプを用いた常温超音波接合の機構調査 Mechanism of Room-Temperature Microjoining Using Ultrasonic Bonding of Compliant Bump 九州大学 ⁰岩鍋 圭一郎, 首藤 高徳, 浅野 種正 Kyushu Univ. ^OKeiichiro Iwanabe, Takanori Shuto and Tanemasa Asano E-mail: iwanabe@fed.ed.kyushu-u.ac.jp

1. はじめに

赤外線イメージセンサーのような、化合物半導体と Si LSI の異種材料チップオンチップ(CoC) 積層では、熱膨 張係数差によって発生する歪みが信頼性を大きく阻害す る。よって、できるだけ常温に近い温度で積層する技術 の開発が重要である。我々が開発を進めてきた先鋭バン プ(コンプライアントバンプ)[1]は、加圧接合時に大きく 変形し、基板及びチップへの応力を緩和するとともに、 新生面が発現するために、150℃で10,000 ピン以上の高密 度 I/O 接続が可能である。また、先鋭バンプの固相接合 時に、バンプチップに超音波振動を印加することによっ て、常温かつ高密度の低荷重接続も実現している[2]。実 際に InGaAs の化合物半導体センサチップと Si 基板上に CMOS 読み出し回路を形成したチップの異種材料間にお いて、80,000 ピン以上の常温接合を行い qVGA クラスの 高解像度の近赤外画像を得ている[3]。しかし、この超音 波加振における常温接合メカニズムについては解明され ていない部分が多い。そこで今回、接合時の超音波振動 の効果に注目し、接合メカニズムの調査を行った。

2. 実験及び結果

先鋭バンプには、逆テーパーレジスト法で形成した Au 円錐バンプを用いた。図 1 に先鋭バンプの超音波接合の 模式図を示している。Si 基板上に先鋭バンプ、対向電極 となる Au 平坦バンプを形成している。どちらのチップに も、110×110の合計 12,100 個のバンプを形成している。

図2に、超音波振動による金属の変形促進効果の調査 を行ったグラフを示す。横軸は接合荷重、縦軸は接合後 のバンプの高さを変形量として示している。この結果よ り、常温で荷重を加えた場合と比較して、超音波振動を 印加した場合、また、150℃の加熱を加えた場合、バンプ の変形が促進されていることが分かる。また、加熱を加 えた場合と比較して、超音波振動を印加した方がより大 きな変形促進効果を得ることができることが分かった。 さらに、加熱・加振の両方を同時に行うと、両方の変形 促進効果を同時に得ることができることも分かった。

図 3(a), (b)に、常温で超音波接合を行った試料断面の FIB 像及び TEM 像を示す。この結果より、接合界面の先 鋭バンプ変形部分において、Au 結晶粒が微結晶化してい ることが観察できる。この接合界面近傍における Au の結 晶粒微結晶化は、対向 Au 電極に比べて変形しやすい形状 の先鋭バンプが超音波加振に伴い優先的に塑性流動する ためであると考えられる。このような微結晶領域は通常 の結晶粒とは異なり空孔や転移などの格子欠陥が著しく 導入された状態となる。超音波振動を印加せずに変形を 行った場合ではこのような結晶粒径の微結晶化は観察で きず、以上の結果から、超音波加振により常温接合であ っても接合界面近傍の汚染物質を除去し、原子拡散を促 進することによって、図 3(c)のように接合界面において 原子レベルで隙間ない接合が可能であると考えられる。

3. まとめ

接合における超音波振動の Au 先鋭バンプへの変形促 進効果の調査を行い、超音波加振によって、荷重のみ及 び、熱圧着による接合に比べて大きな変形促進効果を得 ることができることを示した。さらに、超音波接合を行 った試料について接合断面の FIB 及び TEM 観察を行った ところ、先鋭バンプ接合界面近傍における Au の結晶粒微 結晶化が観察できた。このように格子欠陥が著しく導入 された状態を接合界面に発生させることにより、常温条 件であっても原子拡散を促進し、粒子を隙間なく接合す ることができたと考えられる。

謝辞 本研究の一部は科学技術振興機構の研究成果最適展開 支援プログラム(A-STEP)の援助によるものである。 参考文献

[1] N. Watanabe et al.: International Electron Devices Meeting Technical Digest (2005) pp. 687-690.

[2] K. Iwanabe et al. : Low Temperature Bonding for 3D Integration (2012) Proc. pp. 167-170.

[3] T. Shuto et al. : Jpn. J. Appl. Phys. 53 (2014), (in press).

図 3: 接合断面観察 (a) FIB 像 (b) TEM 像 (c) TEM 像(界面近傍)