微量水分計測のためのボール SAW センサシステムの高度化

Development of ball SAW sensor system for trace moisture measurement 東北大 ¹, 凸版印刷 ², [○]辻俊宏 ¹, 萩原啓 ¹, 大場俊弘 ¹, 小清水秀和 ¹, 大泉透 ¹, 竹田宣生 ¹, 赤尾慎吾 ^{1,2}, 大木恒郎 ², 高柳浩介 ², 柳沢恭行 ², 中曽教尊 ², 塚原祐輔 ², 山中一司 ¹

Tohoku Univ. ¹, TOPPAN PRINTING Co., LTD. ², [°]T. Tsuji ¹,S. Hagihara ¹, T. Ohba ¹, H. Koshimizu ¹, T. Oizumi ¹, N. Takeda ¹, S. Akao ^{1,2}, T. Ohgi ², K. Takayanagi ², T. Yanagisawa ², N. Nakaso ², Y. Tsukahara ², K. Yamanaka ¹

E-mail: t-tsuji@material.tohoku.ac.jp

<u>はじめに</u> ゾルゲル SiOx 膜のボール SAW(surface acoustic wave)センサ[1]は加工変質層 SiOx センサ[2]よりも 1 桁高感度であり、高濃度(>1μmol/mol)の応答からは 10nmol/mol より低い検出限界が期待される。しかし、高真空用 SMA コネクタとフッ素ゴム O リングを用いた従来のセンサセルでは 10nmol/mol レベルの応答を検証できなかった。本発表ではこの課題を解決するセルを開発してゾルゲル SiOx 膜センサの性能を評価した結果を報告する。

<u>実験</u> 超高真空(UHV)用 SMA コネクタとメタル O リングを用いたセル(Fig.1)で高調波ゾルゲル SiOx センサの周回波(4 周目)を測定し、240、80MHz の遅延時間応答を差分して温度補償を行った[3]。また下流にキャビティリングダウン分光装置(cavity ringdown spectroscopy; CRDS)を接続して水分濃度を較正した。

<u>結果</u> 従来のセンサセルでは不可能だった 4 から 17nmol/mol の変化を明瞭に測定でき (Fig.2)、実験値から外挿した直線とノイズの 3 倍の値の交点から得た検出限界は 0.2nmol/mol だった(Fig.3)。 尚、応答は 10nmol/mol のレベルまで濃度の 1/2 乗に比例していた。

<u>まとめ</u> UHV セルによりシステムの高度化の 基礎となるセンサの感度評価に目途がついた。 <u>参考文献</u> [1] Takayanagi et. al.: Accepted to Mater. Trans. [2] Takeda et. al.: Int. J. Thermophys. **33** (2012) 1642. [3]Nakatsukasa et. al.: JJAP **45** (2006) 4500.

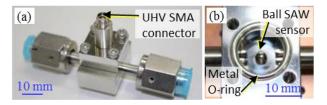


Fig.1 UHV sensor cell (a) appearance (b) inside

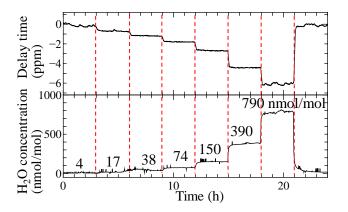


Fig.2 Delay time response of ball SAW sensor with sol-gel SiOx film and H_2O concentration by CRDS

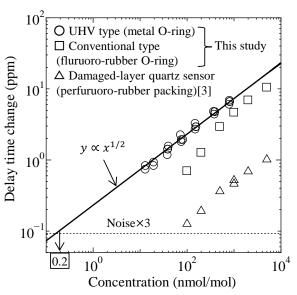


Fig.3 Concentration dependence of response