19a-D6-5

Doped ZnO based nanostructures for gas sensing applications.

Amir Abidov¹, Bunyod Allabergenov¹, Oybek Tursunkulov¹, Xiao Feiyi¹, Jin Xing¹, Supab Choopun², Javier Garay³, Hitoshi Habuka⁴, Sungjin Kim¹

¹Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 730-701, Gyeongbuk, South Korea.

²Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Thailand.

³UC Davis, Bourns Hall A303, University of California, Riverside, USA

⁴Department of Chemical and Energy Engineering, Yokohama National University

E-mail: sjghim@nate.com

Recently 3-dimensional nanostructured ZnO based sensors have attracted much attention due to high sensivity to various gases. For improving electrical characteristics of ZnO semiconductor various dopants can be introduced. Doping method plays crucial role in sensing performance of metal oxide based gas sensors. ZnO tetrapods were doped using three different methods: sputtering diffusion, electroplating, and ink diffusion. Conductivity during interaction with reducing gases was compared. Microstructure was examined using Field Emission Scanning Electron Microsope (FESEM), crystallinity was measured by X-ray Diffraction (XRD), optical properties were obtained by UV-visible spectrophotometer (UV-vis), ionic state of dopants was analyzed by X-ray Photoelectron Spectroscopy. Advantages and disadvantages of each doping method were summarized along with associated sensing mechanism. Results were discussed. Keywords: ZnO, tetrapods, doping, sensors.

Fig.1 Impedance characteristics of gas sensibility of ZnO nanostructures synthesized by microwave assisted technique.