19a-D7-12

Impact of Ga/(In+Ga) Content in Different Cu(In,Ga)Se₂ Part on Cell Performance Investigated by Correlation Coefficient

Department of Electrical and Electronic Engineering, Ritsumeikan University¹, Environment & Energy Research Center, Nitto Denko Corporation², ^{o(P)}J. Chantana¹, D. Hironiwa¹, T.

Watanabe², S. Teraji², K. Kawamura², T. Minemoto¹

E-mail: jakapan@fc.ritsumei.ac.jp

The Cu(In,Ga)Se₂ (CIGS) solar cells are fabricated, where CIGS absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called "multi-layer precursor method" [1]. The Ga/III profile is investigated by dynamic-secondary ion mass spectroscopy. In this work, the correlation (linear dependence) between cell parameters and the averaged Ga/III ratios, calculated in different depth ranges of the Ga/III profiles, is examined by correlation coefficient. The correlation coefficient, calculated as shown in ref. [1], determines the degree to which two variable's movements are associated. It varies from -1 to +1. A -1 indicates perfect negative correlation, and +1 indicates perfect positive correlation.

In Fig. 1, V_{OC} and averaged Ga/III, calculated in the range (A) from 0 to 200 nm, indicate high correlation (less scatter data), whereas V_{OC} and averaged Ga/III, calculated in the range (B) from 800 to 1600 nm, show less correlation (more scatter data), thus leading to correlation coefficient of V_{OC} (0.97) in the case of A higher than that (0.92) in the case of B. Moreover, the correlation coefficient of V_{OC} in Fig. 2 is close to 0.97 when the depth range (< ~320 nm) for calculating averaged Ga/III. Based on the results in Figs. 1 and 2, it is implied that V_{OC} is strongly influenced by Ga/III content near CIGS absorber surface of the solar cell. Motivated by the results, we also observe the correlation (linear dependence) between other cell parameters (*FF*, and J_{SC}) and various averaged Ga/III ratios calculated in several depth ranges in CIGS absorber to distinguish which part of the absorber primarily affects each cell parameter (*FF*, and J_{SC}), providing general insight into the requirements for the improvement of cell efficiency. The detail will be discussed.

expanding into its bulk using for the calculation of various averaged Ga/III ratios potted against correlation coefficients of V_{OC}

[1] Jakapan Chantana et. al., Journal of Applied Physics 114 (2013) 084501.

Acknowledgement

This work is partly supported by NEDO.