可視域 ZnCdMgO 4 元混晶薄膜の RPE-MOCVD 成長と PV 特性

Synthesis tendency ZnCdMgO alloy films by RPE-MOCVD and PV characters

静大工¹,静大院工²,⁰仁枝嘉昭¹,中村篤志²,天明二郎²

Shizuoka Univ.¹,Grad.School of Eng.Shizuoka Univ.², ^oY.Nieda¹, A.Nakamura², J.Temmyo²

E-mail: omaarosiosn5.mdh@gmail.com

1.はじめに

ZnO はウルツ鉱構造の直接遷移型の半導体である. Zn_{1-x}Cd_xO や Mg_yZn_{1-y}O に混晶化させること でバンドギャップを制御できる^{1,2}ため様々な光デバイスへの応用が期待される. 問題点は, ZnCdO でキャリア濃度が 10¹⁹と高いことが上げられる.本研究では ZnCdO に Mg を混晶化させることに より可視域の ZnCdMgO 四元混晶の成長とその PV 特性について報告する.

2.実験

成長方法はラジカルを用いた RPE-MOCVD 法を用いる. 有機 原料は DEZn,DMCd の供給量を固定し MeCp₂Mg の供給量を変化 させ水素キャリアガスでモル比を制御した. 同時に O₂ 150sccm,H₂ 5sccm を混合してラジカルを供給する. RF 電力は 40W, 圧力は 0.1Torr, 基板温度は 400℃とし a 面サファイア上に c 面成長を成長を行った. 光学特性を分光透過率で測定し, 結晶 構造解析を XRD で行った. またショットキー電極は PEDOTPSS, n 電極は Ti/Au を用いたショットキー接合を形成し IV 特性を測 定することで薄膜の基礎特性を評価した.

3. 結果と考察

分光透過率測定による結果を Fig.1 に示す. MeCp₂Mg の供給比 R_{Mg} (%)=[MeCp₂Mg]/([DEZn]+[DMCd]+[MeCp₂Mg])×100 と定義 する. 出発材料である ZnCdO から MeCp₂Mg の供給比を増加さ せるとブルーシフトしていくのがわかる. 分光透過率スペクトル からバンドギャップの算出をした. ZnCdMgO でバンドギャップ を 2.82 \leq Eg \leq 3.24 まで制御することができた. 次に Fig2 に XRD 測定の結果を示す. 回折パターンからウルツ鉱構造を保ち c 面成 長していることが確認され, Mg の供給比を増加させると c 軸長 が短くなる. Mg²⁺(0.57A)のイオン半径が Cd²⁺(0.78A)よりも小さ いことによるものである.

ZnCdMgO に XPS 測定を行い組成分析を行った. Cd が 9.4%, Mg が 2.6%取り込まれていることが確認された. またキャリア濃 度を測定すると ZnCdO では 3.1×10^{19} cm⁻³ であるのに対して ZnCdMgO の R_{Mg}=24.5%のものでキャリア濃度は 3.6×10^{18} cm⁻³ と 一桁ほどキャリア濃度を低減させることができた. Mg を混晶化 させることによりアクセプタ準位ができ,補償されるためである. R_{Mg}=24.5%の ZnCdMgO で暗電流下と Xe ランプ照射下で IV 測定 を行った結果を Fig.3 に示す. 開放電圧 V_{oc}=0.18V となり光起電 力が得られた.

本研究を通して ZnCdMgO 混晶の PV セルとしての適応性を示 せた.

5. 参考文献

[1] K. Yamamoto, T. Tsuboi, T. Ohashi, T. Tawara, H. Gotoh, A. Nakamura, J. Temmyo, J. Crystal Growth 312 (2010) 1703.[2] M. Suzuki, S. K. Mohanta, A. Nakamura, J. Temmyo, films by RPE-MOCVD, 2012SSDM, Kyoto,Sept. 25-28, 2012,PS-8-3.3) N. Ohmura, S. K. Mohanta, A. Nakamura, J. Temmyo IC II-VI compounds and related material, Nagahama, Sept. 9-13, 2013, Tu-P10(poster)

Figs1.Transmittans spectra of ZnCdMgO

Figs3.PV performance in dark and in xenon ramp