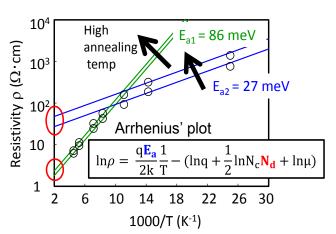
β-FeSi,の抵抗率熱処理依存性

Resistivity Dependence of β-FeSi₂ on Annealing Temperature

東工大フロンティア研¹,東工大総理工²,東芝マテリアル³ ⁶稲村太一¹,嘉藤貴史¹, 佐々木亮人³,青木克明³,角嶋邦之²,片岡好則²,西山彰²,杉井信之²,若林整², 筒井一生²,名取研二¹,岩井洋¹


Tokyo Tech. FRC ¹, Tokyo Tech IGSSE ², Toshiba Material Co., LTD³, °T. Inamura ¹, T. Kato ¹, A. Sasaki ³, K. Aoki ³, K. Kakushima ², Y. Kataoka ², A. Nishiyama ², N. Sugii ², H. Wakabayashi ², K. Tsutsui ², K. Natori ¹, H. Iwai ¹

E-mail: inamura.t.ab@m.titech.ac.jp

【はじめに】 β -FeSi₂はバンドギャップ 0.85eV を有する直接遷移半導体であり[1]、赤外域における吸収係数が高いため(α > 10^5 cm⁻¹)ため [2]、タンデム型太陽電池のボトムセルとしての応用が期待できる。特に、 $BaSi_2$ と β -FeSi₂の組み合わせでは理論上 40%近い効率を得ることができる。しかし、 β -FeSi₂は現状としてキャリア密度が高いため十分な空乏層幅が形成されないという課題があるが [3]、キャリア密度の高い原因が分かっていない。そこで、本研究では β -FeSi₂の抵抗率から活性化エネルギーを求め、熱処理依存性を調べることによりキャリアの発生源について考察する。

【実験方法】n-Si(100)上に熱酸化膜が形成された基板を洗浄後、膜厚 50nm の W 電極を堆積した。その後、膜厚 80nm の $FeSi_2$ 膜をスパッタにより堆積し、F.G. ($H_2:3\%,N_2:97\%$)雰囲気で、熱処理温度を変化させて RTA (Rapid Thermal Anneal)によりシリサイド化を行った。これらの試料の抵抗率を TLM (Transmission Line Model) 法により測定した。

【実験結果】Fig.1 に 800 °C, 825 °C でアニールを行った 2 種類の試料の抵抗率温度依存性を示す。アレニウスプロットにより E_{a1} =86 meV, E_{a2} =27 meV の活性化エネルギーを抽出した。Fig.2 には 800 °C でアニールした試料を1 とした時に、Fig1.の切片から計算したアクセプタ量の変化を示す。ただし、ここでは移動度を一定とみなしている。25 °C のアニール温度の差で大きな減少がみられたことから、 E_{a1} , E_{a2} の準位は Fe と Si の組成比のずれではなく、結晶欠陥に起因するものと示唆される。

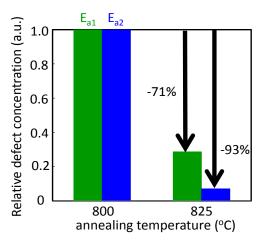


Fig.1 Temperature dependence of resistivity of β -FeSi₂

Fig.2 Reduction of defect concentration due to annealing

- [1] K. Lefki, et al, J. Appl. Phys, 69,352 (1991) [2] J. Yuan, et al, Physica B, 405, 4565-4569 (2010)
- [3] K. Takakura, et al, Jpn J. Appl. Phys, 309, 233-236 (2000)