19p-D6-3

Improvement of Electrical Properties of InGaZnO Thin-Film Transistors by Fluorinated Silicon Nitride Passivation

Kochi University of Technol., [°]Jingxin Jiang, Toda Tatsuya, and Mamoru Furuta. E-mail: 166004j@gs.kochi-tech.ac.jp

Recently, oxide-based thin-film transistors (TFTs) have attracted considerable attention for applications such as active-matrix flat panel displays (FPDs). Among oxide semiconductors, amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for TFT application [1]. A silicon nitride contained hydrogen (SiN_X:H) is widely adapted for passivation layer (PL) of amorphous silicon TFTs; however, it is known that SiN_X:H passivation deteriorates electrical properties of oxide TFT due to hydrogen diffusion into an IGZO channel. In this presentation, fluorinated SiN_X (SiN_X:F) was employed as a PL of IGZO TFT. Difference of the electrical properties of IGZO TFTs between silicon oxide (SiO_X) and SiN_X:F passivation was investigated

Bottom-gate IGZO TFT with SiO_x etch-stopper, as shown in Fig. 1, was used for this experiment, and a SiO_x or SiN_x:F was deposited on the TFT as a PL. The experimental transfer characteristics (I_{DS} - V_{GS}) of the IGZO TFTs with SiO_x and SiN_x:F PL are shown in Fig. 2(a) and 2(b), respectively. Transfer characteristics were measured at a drain voltage (V_{DS}) of 0.1 V, the electrical properties are summarized in Table 1. It was found that the IGZO TFT with SiN_x:F PL showed steep subthrehold swing (*S*) and small hysteresis as compared with the SiO_x PL. To investigate the reason for improving *S* of the TFT with the SiN_x PL, channel length (L) dependence of the *S* value was studied. Fig. 3 shows the comparison of *S* value of the IGZO TFTs with SiO_x and SiN_x:F PL as a function of channel length (L). It was found that *S* value improved with decreasing L for TFT with SiN_x:F PL: however, *S* do not exhibited L dependence for the TFT with SiO_x PL. This result suggests that the Fluorine diffuses not only through ES-SiO_x layer but also from the contact hole of the TFT. Fluorine in SiN_x PL plays an important role for improving electrical properties. Influence of SiN_x:F PL on reliability of the IGZO TFT will be presented at a conference. [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature. 432, 488 (2004).

[2] K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Let., 99 (2011).

Fig. 1. Schematic cross-sectional view of the ITZO TFT

Table 1		
Passivation layer	SiO _X	SiN _X
Mobility (cm ² V ⁻¹ s ⁻¹)	12.53	12.9
Hysteresis (V)	0.30	0.07
Subthreshold swing (V/dec.)	0.40	0.21

