19p-D9-2

Si 窒化膜表面近傍における不純物金属原子の 安定性に関する第一原理解析

First-principles analysis on stability of contamination metal atoms in β-Si₃N₄ surface

岡山県立大学大学院情報系工学研究科¹, ソニー株式会社² [○]小林駿介¹, 柴田大生¹, 末岡浩治¹, 小町潤², 嵯峨幸一郎² Okayama Pref. Univ., Dept. of System Engineering¹, Sony Corporation² [○]S. Kobayashi¹, D. Shibata¹, K. Sueoka¹, J. Komachi² and K. Saga²

E-mail: ca24010b@c.oka-pu.ac.jp

【緒言】LSI 製造プロセスにおける不純物金属汚染はゲート絶縁膜の信頼性に影響したり,接合 リーク電流の増大を引き起こすことが知られている.我々は,すでに β -Si₃N₄バルク中における不 純物金属の拡散機構に関する第一原理解析を報告した^[1].今回,不純物金属原子がSi 窒化膜表面 から内方拡散することから β -Si₃N₄表面モデルを作成し,表面近傍における金属原子の安定性に関 する第一原理計算解析を行った.さらに実験^[2]との比較も行ったので報告する.

【計算方法】β-Si₃N₄バルク結晶から,図1に示すようなSi原子(黄色)18個,N原子(青色) 24 個を含む表面モデルを作成した.ここで,表面垂直方向に1 nm 厚さの真空スラブを設け,最 下層のSiとN原子のダングリングボンドをH原子で終端している.このβ-Si₃N₄表面モデルの深 さ方向にFe, Cr, Ni, Cu,Wを配置し,構造最適化して全エネルギーを求めた.図1には最安定 位置のFe原子(水色)も示してある.計算には汎用第一原理計算ソフト CASTEP を使用した.

【結果】図 2 に β -Si₃N₄表面近傍と β -Si₃N₄バルク中の金属原子の形成エネルギーを示す. これより、計算した全ての金属について、Si₃N₄バルク中よりも Si₃N₄表面における形成エネルギーが低い、すなわち Si₃N₄表面は金属原子のトラップサイトとなっていることがわかる. とくに、Fe, Ni、Cu は Cr、W と比較して Si₃N₄表面で安定である. 柴田ら^[2]の計算結果も考慮すると、これらの 5 種類の金属の挙動は次のように整理できる.

Fe:Si 窒化膜表面にトラップされやすく,SiN/Si 構造へ入りにくい.

Cu, Ni: Si 窒化膜表面にトラップされやすく, SiN/Si 構造へ入りやすい.

Cr,W:Si窒化膜表面にトラップされにくく,SiN/Si構造へ入りにくい

Si窒化膜表面における金属原子のトラップされやすさは、イオン注入でのノックオンされやすさ にも関係すると考えられる.以上の計算結果をもとに、上野らにより報告されている金属汚染実 験^[3]の説明も行う.

Fig.1 β -Si₃N₄ surface model obtained in the present study

Fig.2 Calculated formation energies

[1]小林他, 第 60 回応物春季学術講演会 (2013), 28p-G8-9 [2] 柴田他, 本講演会 [3]上野他, 第 60 回応物春季学術講演会 (2013), 28p-G8-8