19p-E3-12

顕微電界誘起光第二次高調波発生測定法を用いた 二層積層有機 EL 素子の界面蓄積電荷分布および EL 発光強度の評価 Relationship between Interfacial Charge Accumulation and EL Intensity in Double-Layer Organic Light-Emitting Diodes By Microscopic Electric-Field-Induced Optical Second-Harmonic Generation Measurement 東工大院理工¹, JSPS^{2 O}貞方 敦雄^{1,2}, 矢野 椋太¹, 田口 大¹, 間中 孝彰¹, 岩本 光正^{1†}

Tokyo Institute of Technology¹, JSPS², [°]Atsuo Sadakata^{1,2}, Ryota Yano¹,

Dai Taguchi¹, Takaaki Manaka¹, Mitsumasa Iwamoto¹

[†]Email address: iwamoto@pe.titech.ac.jp

はじめに:面垂直方向の電界評価が可能な顕微電界 誘起光第二次高調波発生測定法を用い[1]、二層積層 有機 EL 素子のα-NPD/Alq₃界面の蓄積電荷 Q_sと EL 発光強度分布の関係性について検討した。

実験方法:パルスレーザー(820 [nm])を Z 偏光子で光 軸を中心にラジアル偏光させ対物レンズに入射する。 垂直方向の光電界 $E_z(\omega)$ を発生させ α -NPD 層の電界 E_1 の二乗に比例した SH 光(410 [nm])強度を光電子増 倍管(PMT)で測定(Fig. 1(a))。電界と界面蓄積電荷 Q_s を面内(Fig. 1(b))の任意の個所で顕微測定が可能であ る。キャリヤ注入のないラプラス場での SH 光強度 I_{SHI} 測定には矩形波電圧($t_{on} = 10$ [µsec], $t_d = 1$ [µsec])、 一方、キャリヤ注入が生じ EL 発光するポアソン場で の SH 光強度 I_{SH2} 測定には矩形波電圧($t_{on} = 50$ [msec], $t_d = 10$ [msec])を用いた(Fig. 1(c))。EL 強度測定は同光 学系で行った。

結果・考察:EL 発光強度分布には発光が弱い個所が いくつか見られる(Fig. 2)。次に SH 光強度測定を X 軸 0 [µm]とし Y 軸方向に走査した結果を Fig. 3 に示 す。Figure 3(a)には PMT の出力、(b)にはレーザー光 強度で規格化した SH 光強度を示す。あらかじめ、 SH 光強度 ΔI_{SH} の変化に対する α -NPD 層の電界 ΔE_1 の 関係 ($\Delta E_1 = \Delta I_{SH}/1.161 \times 10^9$)を求め、 SH 光強度 I_{SH1} (Laplace)と I_{SH2} (Poisson)の差 ΔI_{SH} から界面蓄積電 Q_s (= $\Delta E_1 d_1(C_1 + C_2) = \epsilon_0((\epsilon_1 d_2 + \epsilon_2 d_1)/d_2) = 1.029 \times 10^{-5}$ ΔI_{SH})を計算した(Fig. 3(c))。ここで、C は静電容量、d は膜厚、 ϵ_0 は真空の誘電率、 ϵ_1 (=3)と ϵ_2 (=3.5)はそれぞ れの比誘電率とする。結果より、 Q_s と EL 強度分布 には相関があり、正孔が多く蓄積する所で EL 強度が 強くなる。詳細な議論については当日行う。

[1] D. Taguchi, et al., Jpn. J. Appl. Phys. **52** (2013) 04CK04.

Fig. 3 The Q_s and EL intensity distributions.

Y axis [µm]