ガラス基板上の自己整合四端子メタルダブルゲート低温 poly-Si TFT

Self-Aligned Four-Terminal Planar Metal Double-Gate Low-Temperature Poly-Si TFTs on Glass Substrate

東北学院大工¹ 広大 RNBS² ^O加茂慎哉¹, 黒須李沙¹, 佐藤旦², 原明人¹

Tohoku Gakuin Univ.¹ RNBS Hiroshima Univ.² Shinya Kamo¹, Risa Kurosu¹, Tadashi Sato², Akito Hara¹ E-mail: akito@tjcc.tohoku-gakuin.ac.jp

20

【はじめに】埋め込みメタルゲートを有する平面型メタルダブルゲート低温 poly-Si TFT (E-MeDG LT poly-Si TFT) を自己整合プロセスによりガラス基 板上に実現している¹⁾。しかしながら、ノンドープの薄い poly-Si 膜を使用 し、n-chとp-ch両方で同じメタルゲート材料を使用するため、閾値電圧(V_{th}) の制御が不十分であった。ガラス基板上に低消費電力で高速回路を実現する ためには、V_{th}制御が重要である。本研究では、E-MeDG LT poly-Si TFT 作製 プロセスを少し変更することにより四端子(4T) E-MeDG LT poly-Si TFT を 作製し、その評価を行った^{2,3)}。

【実験方法】 石英ガラスを利用している。 ゲートメタルは上下ともタングス

テン(W)である。ボトムメタルゲート (BG)は、RIE によるトレンチの形成とWスパッタ、引き続いて行 われた CMP により埋め込み構造となっている。チャ ネル Si は、非晶質 Si を 75 nm 成長後、半導体励起 固体 CW レーザ (Nd: YVO4, 532 nm) を利用した CLC 結晶化4)により大粒径のラテラル結晶を実現した。 完成したデバイス写真を図1に示す。TG-Si02は50 nm、BG-SiO₂は100 nmである。

【実験結果】図2(a)は、異なるBG電圧(VBG)に対す る TG 動作のトランスファ特性(TG: drive, BG: control)、一方(b)は、異なる TG 電圧(V_m)に対する BG 動作のトランスファ特性(TG: control, BG: drive)を示す。尚、図中の太い実線は、連結型 DG

での特性である。図3はTG あるいは BG を drive gate とした時の V_{th}の control gate 電圧依存性である ($\gamma = \Delta V_{th} / \Delta V_{cG}$, V_{cG} は control ゲート電圧)。 表1はM. Masahara et al.ら^{5,6)}のモデルによる理論値と本実験の結果を示 している。図4はgmから求めた移動度のcontrol ゲート電圧依存性である (移動度の最大値で規格化している)。

【考察】測定された y や s. s. は理論値と傾向において一致する。これは poly-Si が大粒径を有し結晶品質が良いことが関係している。一方で、理論 値と実験値の不一致の原因は、酸化膜や界面の品質、結晶が粒界を含んで いることが挙げられる。Control ゲートへの電圧印加による移動度の劣化は、 電子が酸化膜界面に強く押し付けられることによる

クーロン散乱・ラフネス散乱に起因すると考えられる。 【まとめ】高性能な 4T E-MeDG LT poly-Si TFT を 550℃ でガラス基板上に作製した。本研究で作製した TFT は、grand plane による閾値制御と異なり、個々の TFT の閾値制御が可能である。高い Vth の制御性は、ガラ ス基板上に高速で低消費電力の CMOS 回路の作製を可 能にするものと考えられる。

【謝辞】本研究は、科学研究費(C) 22560341 と(C) 25420339 により援助 された成果を含んでいる。また、本研究のイオン注入部分は、文部 科学省ナノテクノロジープラットフォームプロジェクトの支援 を受けて広島大学ナノデバイス・バイオ融合科学研究所で実施さ れました。

参考文献

1) H. Ogata et al.: IEICE Trans. on Electron. E96C (2013) 285. 2) R. Kurosu et al.: Proc. IDW'13 (2013) p. 262. 3) 加茂 その他:応 用物理学会東北支部第68回講演会予稿集(2013) p.38.4) A. Hara et al.: Jpn. J. Appl. Phys. 43 (2004) 1269.5) M. Masahara et al.: IEEE

Trans. Electron Devices 52 (2005)2046. 6) M. Masahara et al.: IEEE Trans. Nanotech. 5 (2006)716.

Table I. Comparison of γ and s.s. between theory and experiment													
	TG	drive (E	3G contro	BG drive (TG control)									
	γ		s.s. (V/dec)	γ		s.s. (V/dec)						
trol gate	N	Р	N	Р	Ν	P	Ν	Р					

			0.0. (*/400)		'		3.3. (V/ucc)	
Control gate	Ν	P	N	Р	Ν	Р	N	P
Theory	0.40	0.75	0.08	0.11	1.3	2.5	0.14	0.21
Experiment	0.47	0.60	0.16	0.25	1.5	2.0	0.32	-

