19p-PG3-25

二段階 P イオン注入による低コンタクト抵抗 ($\sim 3 \times 10^{-8} \,\Omega \text{cm}^2$) NiGe/ n^+ Ge 接合形成 NiGe/ n^+ Ge junctions with ultralow contact resistivity ($\sim 3 \times 10^{-8} \,\Omega \text{cm}^2$) formed by two-step P-ion implantation

産総研 連携研究体 グリーン・ナノエレクトロニクスセンター

Collaborative Research Team Green Nanoelectronics Center, AIST

[°]小池 正浩, 上牟田 雄一, 黒澤 悦男, 手塚 勉

M. Koike, Y. Kamimuta, E. Kurosawa, and T. Tezuka

massahiro.koike@aist.go.jp

Ge nMOSFET 開発において、メタル (例えば NiGe)/nGe のコンタクト抵抗 R_C が高くなることが問題になっている。メタルのフェルミレベルが Ge の価電子帯付近にピニングされ、nGe に対してはショットキーバリアハイト (SBH) が高くなるためである [1]。

R_C を低減する方法には、SBH を本質的に低減する方法と実効的に低減する方法の二つがあり、後者の方法として、 例えばメタル/nGe 界面の n 型不純物濃度を高くする方法がある [2]。ショットキー電流よりもトンネル電流が支配的に なるため電流が増大し、見かけ上 SBH が低くなる。

しかし通常のプロセスで形成すると NiGe/ n^+ Ge 界面の n 型不純物濃度は 低くなる。Ge 中では n 型不純物 (例えば P) の拡散が速いため、電気的活性 化熱処理 (~ 600°C) して n^+ Ge を形成すると 2×10^{19} cm⁻³ 程度の低濃度に なり [3]、また n^+ Ge に Ni 堆積し熱処理して NiGe 形成したとき、NiSi-Si 系 で起きるような界面での P 偏析は NiGe-Ge 系では起こらないからである [4]。

そこで本研究では、二段階 P イオン注入によって NiGe/ n^+ Ge/pGe を作 製し、 n^+/p 接合リーク電流を増大させること無く NiGe/ n^+ Ge コンタクト 抵抗低減できるかを検討した。

素子分離形成した pGe(100) 基板に P イオン注入 (1×10¹⁵ cm⁻², 20 keV) し熱処理 (600°C, 1 min) して n^+/p 接合を形成した。そしてさらに P を追加 イオン注入 (1×10¹⁵ cm⁻², 10 keV, 或いは 1.65×10¹⁵ cm⁻², 20 keV) して Ni をスパッター堆積し、P が拡散しない低温で熱処理 (350°C, 1 min) して NiGe/ n^+ Ge 形成した。 R_C は TLM (transfer length method) により見積 もった。

まず二段階 P イオン注入 n^+ Ge の NiGe/Ge 界面形成する深さにおいて ピーク濃度が高くできることを SIMS によって確かめた (Fig. 1)。 pGe 基 板に P イオン注入し熱処理して形成した n^+ Ge は箱形のプロファイルにな リ、界面が形成される位置での濃度は 5×10^{19} cm⁻³ 程度である。この n^+ Ge にさらに P イオン注入し NiGe 形成する温度 350° C で熱処理した場合には 2×10^{20} cm⁻³ まで高くなる。

二段階 P イオン注入により形成した NiGe/ n^+ Ge/pGe は追加 P 注入無し と較べてほぼ同じ J-V 特性を示し、接合リーク電流を増大させないことが わかった (Fig. 2)。 n^+/p 接合より充分離れた n^+ Ge 表面に P 追加注入する ため、 n^+/p 接合特性に影響を及ばさないからである。

 R_C を見積もったところ、二段階 P イオン注入 NiGe/n⁺Ge は通常の P 追加イオン注入無しの NiGe/n⁺Ge に較べて抵抗を低くできることがわかっ た (Fig. 3)。 R_C の Ni 膜厚 (0 nm の場合は Ti コンタクト) 及び P イオン注 入加速エネルギー依存性の結果によると、Ni 層が厚くなるほど、また加速エ ネルギーが低くなるほど R_C が低くなる傾向にある。これは NiGe/Ge 界面 における P 濃度と対応していると考えられる。Ni 層が厚く (10 nm)、加速エ ネルギーが低い (10 keV) 場合、通常の NiGe/n⁺Ge に較べて三桁抵抗が低 くなり、~ $3 \times 10^{-8} \Omega \text{cm}^2$ という極めて低い抵抗が得られた。この値は、過 去報告されたメタル/n⁺Ge に対する R_C のどれよりも低い (報告されている 最小値は $1.68 \times 10^{-7} \Omega \text{cm}^2$ [5])。

コンタクト抵抗が低くなる理由は NiGe/n⁺Ge 界面の n⁺Ge において高 濃度の P が電気的に活性化したためと予想される。P だけでなく他の n 型 ドーパント(例えば As)でも効果があることを確認している。尚、追加イオ ン注入により欠陥生成してリーク電流増大し抵抗が低減した可能性は低い。 非ドーパント(例えば Ge や Ar など)の追加イオン注入では効果が無いこと を確かめている。

このように、二段階 P イオン注入によって pGe 基板に NiGe/ n^+ Ge を形成すると、 n^+/p 接合リーク電流を低く維持しながら、NiGe/ n^+ Ge コンタクト抵抗を低減できることが明らかになった。

本研究を進めるにあたり、多大なご協力をいただきました産総研テクニカ ルスタッフの方々に感謝します。本研究は政府の最先端研究開発支援プログ ラムにより助成されたものである。

10²¹ 2x10²⁰ cm⁻³ P concentration (cm⁻³) 10²⁰ 1st + 2nd P I/I st P I/I 10¹⁹ 20 keV 600°C 10¹⁸ 10¹⁷ 2nd P I/I, 10 keV 10¹⁶ 60 30 90 120 0 150 Depth in Ge (nm) FIG. 1: SIMS profiles of P in Ge.

 $NiGe/n^+Ge/pGe$ junctions.

NiGe/ n^+ Ge junctions in TLM structures.

M. Koike *et al.*, Appl. Phys. Lett. **102**, 032108 (2013).
S. M. Sze, *Physics of Semiconductor Devices*, 2nd ed. (Wiley-Interscience, New York, 1981).
M. Koike *et al.*, J. Appl. Phys. **104**, 023523 (2008).
M. Koike *et al.*, 201201 (2011).
K. Cullachen *et al.* ECS Trans. **50**, 1081 (2012).

[4] M. Koike et al., Appl. Phys. Express 4, 021301 (2011). [5] K. Gallacher et al., ECS Trans. 50, 1081 (2012).