19p-PG3-27

W₂C 電極導入による La-silicate/Si における平坦な界面の実現

Atomically flat interface of La-silicate/Si with W2C gate electrodes

東工大フロンティア¹,東工大総理工², [○]細田修平¹,カマリ トクダレハン¹,角嶋 邦之², 片岡 好則²,西山 彰²,杉井 信之², 若林 整², 筒井 一生²,名取 研二¹,岩井 洋¹

Tokyo Tech. FRC¹, Tokyo Tech. IGSSE², °S.Hosoda¹, K. Tuokedaerhan¹, K. Kakushima², Y. Kataoka², A. Nishiyama², N. Sugii², Hitoshi Wakabayashi², K. Tsutsui², K. Natori¹, H. Iwai¹

E-mail: <u>hosoda.s.aa@m.titech.ac.jp</u>

【はじめに】La₂O₃/Si 界面の La-silicate は、界面特性が良好であり[1]、将来必要とされる EOT=0.5 nm を実現 するためにゲート絶縁膜として有望である。しかし、EOT が 1 nm 以下になるとゲート電極の影響により界面 特性の劣化を引き起こす[2]。本研究では、W と C を交互に積層して窒素雰囲気で 800℃の熱処理を行うと、 界面特性の良好な W₂C ゲート電極が実現できた。W ゲート電極の場合と比較して界面特性を評価した。

【実験方法】SPM 洗浄後に HF 処理した Si(100)基板上に電子線蒸着法を用いて La₂O₃を堆積した。絶縁膜の堆 積後、真空一貫で RF スパッタリング法により膜厚 10 nm となるまで W 及び C を交互に堆積する積層構造と した。その後 RF スパッタリング法によって W/C 電極上にバリア層である TiN を 10 nm 堆積し、続いて Si 層 を 100 nm 堆積した。フォーミングガス雰囲気中(H₂:N₂=3%:97%)で 800℃の熱処理を行い、裏面に Al コンタク トを形成した。最後にフォーミングガス雰囲気中で 420℃、30 分間の熱処理(FGA)を施した。

【結果】Fig.1 にコンダクタンス法により得られた界面準位密度(D_{it})とEOTの関係を示す。 W_2C 電極を用いることで、 $D_{it} & 3 \times 10^{11} \text{ cm}^2 \text{eV}^1$ 以下まで抑えることができた。Fig2は、 W_2C とWゲート電極のキャパシタのTEMによる断面図を示す。ゲート電極がWのキャパシタに比べて、metal/high-k界面とhigh-k/Si界面でより平坦な界面が形成されていることがわかる。 W_2C 電極を導入することで、より良好な界面特性が期待できる。

Fig.2 Cross sectional TEM images of the La-silicate capacitor with (a) W and (b) W₂C gate electrode.

[1]K. Kakushima et al., Solid-State Electron. Vol.54, pp. 715-719(2010)

[2]T. Kawanago et al., IEEE Trans. ED, Vol.59, pp.269-276(2012