NOとF₂を用いたSiケミカルドライエッチング中のF失活過程の解析（I）

Analysis of F loss during the chemical dry etching of Si using NO and F₂ gases (I)

田崎聡美 1, 林 俊雄 1, 石川健治 1, 関根 誠 1, 佐々木 実 2, 山川晃司 3, 堀 勝 1

1名大院工, 2豊田工大, 3株式会社片桐エンジニアリング

Satomi Tajima 1, Toshio Hayashi 1, Kenji Ishikawa 1, Makoto Sekine 1, Minoru Sasaki 2,
Koji Yamakawa 3, and Masaru Hori 1

1Nagoya Univ., 2Toyota Tech. Inst., 3Katagiri Engineering Co., Ltd.

E-mail: stajima@plasma.engg.nagoya-u.ac.jp

【Introduction】Maintaining the F density during the chemical dry etching of Si using the reaction of F₂ + NO → F + FNO is critical to keep the high etch rate and the etch uniformity across the large-scale wafer. However, F is lost by the reaction of F + NO → FNO in the gas phase [1] and by the reaction at the Si surface [2]. In order to apply this chemical dry etching method to the large-scale Si wafer fabrication; i.e., selectively etch Si over SiO₂, removing sacrificial layer of the microelectromechanical systems (MEMS), texturing the Si surface for the solar panel application to improve the light-electricity conversion efficiency, eliminating the plasma-induced damage layer after the gate etching process, and removing the damaged layer after the chemical mechanical polishing (CMP); the optimal chamber design and the process conditions must be considered to minimize the F loss between the gas mixing point and the surface of materials to be processed. In this study, we have been evaluating the main cause of F loss by designing the gas mixing room, the gas outlet, and by optimizing the process parameters.

【Experimental】10 mm x 100 mm Si samples consisting of SiO₂ mask with square and line patterns were cleaved from the Si (100) wafer. Ar/NO10%/F₂ at the total flow rate of 107 sccm was introduced in the process chamber while varying the chamber pressure, P, between 100 ~ 1000 Pa, and the distance of gas outlet and the sample, d, from 30 to 70 mm during the process time of 5 min. The vertical etch rate, E_v, and the lateral etch rate, E_l, of Si and SiO₂ were measured from the cross-section of the cleaved sample by scanning electron microscopy (SEM). The mean free path, λ, and the number of collisions, n, between the gas mixing point and the sample surface were calculated based on the P and d. The relationship between the E_v, E_l, and n were studied to elucidate the effect of F loss due to collision in the gas phase and the reaction at the Si surface.

【Results and Discussion】Figure 1 shows the relationship between the E_v and n calculated from P and d. E_v increased linearly proportional to the n up to ~ 4000 (Region (I)). Then the E_v gradually decreased at 4000 < n < 5500 by the function of −1dn² (Region (II)). When n > 5500, the significant drop of E_v was observed (Region (III)) with the increase of P and d.

Preliminary, we have been considering that the F generation is increased by the reaction of F₂ + NO → F + FNO (Region (I)) but as the n increased, the F is lost at the gas phase by the reaction of F + NO → FNO (Region (II)). The further increase of n leads to the complete loss of F in the gas phase as well as the encapsulation of adsorption site at the Si surface with NO and FNO (Region (III)).


【Acknowledgement】This research was partially funded by Seeds Validation, Feasibility study stage of A-step, JST. NO gas was kindly donated from Sumitomo Seika Chemicals Co., Ltd.