NO と F₂を用いた Si ケミカルドライエッチング中の F 失活過程の解析 (I)

Analysis of F loss during the chemical dry etching of Si using NO and F_2 gases (I)

^O田嶋聡美¹, 林 俊雄¹, 石川健治¹, 関根 誠¹, 佐々木 実², 山川晃司³, 堀 勝¹

¹名大院工, ²豊田工大, ³株式会社片桐エンジニアリング

[°]Satomi Tajima¹, Toshio Hayashi¹, Kenji Ishikawa¹, Makoto Sekine¹, Minoru Sasaki²,

Koji Yamakawa³, and Masaru Hori¹

¹Nagoya Univ., ²Toyota Tech. Inst., ³Katagiri Engineering Co., Ltd.

E-mail: stajima@plasma.engg.nagoya-u.ac.jp

[Introduction] Maintaining the F density during the chemical dry etching of Si using the reaction of $F_2 + NO \rightarrow F + FNO$ is critical to keep the high etch rate and the etch uniformity across the large-scale wafer. However, F is lost by the reaction of $F + NO \rightarrow FNO$ in the gas phase [1] and by the reaction at the Si surface [2]. In order to apply this chemical dry etching method to the large-scale Si wafer fabrication; i.e., selectively etch Si over SiO₂, removing sacrificial layer of the microelectromechanical systems (MEMS), texturing the Si surface for the solar panel application to improve the light-electricity conversion efficiency, eliminating the plasma-induced damage layer after the gate etching process, and removing the damaged layer after the chemical mechanical polishing (CMP); the optimal chamber design and the surface of materials to be processed. In this study, we have been evaluating the main cause of F loss by designing the gas mixing room, the gas outlet, and by optimizing the process parameters.

[Experimental] 10 mm x 100 mm Si samples consisting of SiO₂ mask with square and line patterns were cleaved from the Si (100) wafer. Ar/NO/10%F₂ at the total flow rate of 107 sccm was introduced in the process chamber while varying the chamber pressure, *P*, between 100 ~ 1000 Pa, and the distance of gas

outlet and the sample, d, from 30 to 70 mm during the process time of 5 min. The vertical etch rate, E_V , and the lateral etch rate, E_L , of Si and SiO₂ were measured from the cross-section of the cleaved sample by scanning electron microscopy (SEM). The mean free path, λ , and the number of collisions, n, between the gas mixing point and the sample surface were calculated based on the P and d. The relationship between the E_V , E_L , and n were studied to elucidate the effect of F loss due to collision in the gas phase and the reaction at the Si surface.

[Results and Discussion] Figure 1 shows the relationship between the E_V and n calculated from P and d. E_v increased linearly proportional to the n up to ~ 4000 (Region (I)). Then the E_V gradually decreased at 4000 < n < 5500 by the function of ~1/ d^2 (Region (II)). When n > 5500, the significant drop of E_V was observed (Region (III)) with the increase of P and d.

Fig. 1 Relationship between the vertical etch rate, E_{ν} , and the number of collisions between the gas mixing point and the sample, *n*. Two experimental parameters were varied, one was the pressure, *P*, and the other was the distance between the sample and the mixing point, *d*.

Preliminary, we have been considering that the F generation is increased by the reaction of $F_2 + NO \rightarrow F + FNO$ (Region (I)) but as the *n* increased, the F is lost at the gas phase by the reaction of $F + NO \rightarrow FNO$ (Region (II)). The further increase of *n* leads to the complete loss of F in the gas phase as well as the encapsulation of adsorption site at the Si surface with NO and FNO (Region (III)).

[References] [1] Hoell et al. J. Chem. Phys. 58 (1973) 2896. [2] Tajima *et al.* J. Phys. Chem. C 117 (2013) 20810.
[Acknowledgement] This research was partially funded by Seeds Validation, Feasibility study stage of A-step, JST. NO gas was kindly donated from Sumitomo Seika Chemicals Co, Ltd..