20a-F8-1

Bragg Reflector Waveguide Modulator toward High-Speed Operations and Low Power Consumption

東工大精研, ⁰顧 暁冬, 松谷 晃宏, 小山 二三夫 Tokyo Tech. P&I Lab., ^OXiaodong Gu, Akihiro Matsutani, Fumio Koyama E-mail: gu.xiaodong@ms.pi.titech.ac.jp

Abstract We demonstrate an ultra-compact electro-absorption modulator based on a Bragg reflector waveguide. The peak-to-peak driving-voltage was below 1.0V. The miniature device shows a prospect of ultra-low power-consumption below 100fJ/bit. The modulator's compact size and high performance come from the slowed-down light group velocity.

Introduction

Nowadays, much attentions are paid on optical interconnects with low power consumptions. There have been reports demonstrating modulators with driving voltage below 1 V, however, they are always at a cost of narrow optical bandwidths or long device lengths [1]. We previously proposed an electro-absorption (EA) modulator employing the quantum-confined Stark effect (QCSE) based on a Bragg reflector waveguide [2, 3]. In this paper, we will show its low-voltage and high-speed modulation. We will also discuss a prospect for ultra-large bandwidth as well as ultra-low power consumption.

Device Structure and Principles

The proposed modulator is fabricated on a VCSEL epitaxial wafer. A schematic cross-section view of the device is shown in Fig. 1. An input light is coupled through a lensed fiber to the device and propagates along the waveguide. A so-called 'slow-light' mode is excited inside the waveguide and travels in a zigzag route. It can promote stronger light-matter interaction inside thus we can make the device several times smaller than conventional EA modulator.

Device Characteristics and Power consumption

We first measured the device static characteristics to see the extinction ratio (ER) versus bias voltages V_b . Devices with different modulator lengths were tested and compared (Fig. 2). Over 10dB ER was obtained with a 35 µm device even below 0.8V. We measured the small-signal response result measured on a 35 µm long modulator with a 965 nm input. The modulation bandwidth (f_{3dB}) is over 13GHz when the bias voltage is -0.5V. Large signal NRZ modulation was also carried out. Clear eye-open can be observed for 10Gbit/s NRZ signal (PRBS 2³¹-1, V_{pp} = 1.0V, V_b= -0.8V) input. It is possible to further downsize the current device volume by a factor of 2~3. The parasitic capacitance will correspondingly decrease thus ultra-high-speed modulation beyond 40Gbps is prospective.

Regarding the power consumption of the modulator, a voltage swing of 500 mV with a 50 Ω termination represents peak-power consumption of 5 mW in the load, which is corresponding to energy consumption per bit of 31 fJ/bit for 40 Gb/s NRZ as shown in Fig. 3. Dynamic dissipation of the device can be given by the relationship $E = CV_{pp}^{2}/4$ [4], where only the energy required to charge and discharge the capacitance of the device is counted. Assuming C = 100 fF and $V_{pp} = 500$ mV, the NRZ energy per bit is 6.25 fJ for a 40 Gb/s signal.

Conclusions

We demonstrated an ultra-compact modulator based on a Bragg reflector waveguide. The extremely small volume of the modulator reveals its potential in reaching ultra-high-speed modulation with low power consumptions.

Acknowledgements

This work was supported by New Energy and Industrial Technology Development Organization (NEDO) in Japan. Xiaodong Gu is a research fellow of Japan Society for the Promotion of Science.

Fig. 1: A schematic cross-section view of the slow-light Bragg reflector waveguide modulator.

Fig. 2: Normalized intensity versus bias voltage for different modulator lengths for 965 nm input.

Fig. 3: Prospects for energy power consumption per bit as a function of bit rates. Two factors of the dissipation in 50 ohm load resistor and the dynamic dissipation in capacitive charging and discharging are considered.

References

- N. C. Helman et al. IEEE J. Sel. Top. Quant. Electron, 11, 338 (2005)
- [2] G. Hirano et al., OFC2007, PDP34 (2007)
- [3] X. Gu et al., ISLC2012, **TuP26** (2012)
- [4] D. A. B. Miller, Proc. IEEE, vol. 97, 1166 (2009)