多幅多モード干渉カプラを用いた偏波分離器の提案

Proposal of Compact TE-TM Mode Splitter Based on Multi-Width Multimode Interference Device

横国大院工 ⁰牛山 大樹, 盧 柱亨, 荒川 太郎 Yokohama National Univ. [°]Taiju Ushiyama, Joo-Hyong Noh, and Taro Arakawa E-mail: {ushiyama-taiju-ny, arakawa}@ynu.ac.jp

【はじめに】

ランダム偏光をTEとTMモードに分ける偏波分離器で は原理として結合長のずれの最小公倍数をとる必要があ るため,偏波分離器の全長が約1000 µm以上と大きいとい った課題がある[1,2].そこで、本研究では、MMI型偏波 分離器の素子長の短縮化を目的として、段構造MMIを用 いた偏波分離器を提案する.ビーム伝搬法(BPM法)よ りその偏波分離特性解析を行った.

【設計および理論特性】

Fig.1に提案する段構造多モード干渉カプラを用いた偏 波分離器の構造図を示す. MMIの幅 W_1 , W_2 およびを長 さ L_1 , L_2 を図のように定めた.また, TEとTMモードのそ れぞれの出力ポートをPort1, Port2とする.従来のMMI 偏波分離器ではTEとTMモードの結合長のずれの最小公 倍数をとるため, MMIの全長を長くとる必要があった. それに対し今回提案する構造では,各モードを別々の位 置で出力させるため最小公倍数をとる必要がなくなり, MMI全長の短縮化が可能となる.

Fig.2にビーム伝搬法(BPM法)により解析した,TE,TM各モード光に対する挿入損失とMMI長 L_1 の関係を示す.TEとTMモードでは結合長が異なるため,TMモードでは430 μ m,TEモードでは445 μ mで挿入損失が最も小さくなる.両モードの損失をともに小さくなる, L_1 =440 μ m を本素子の設計値と決定した.同様にして,挿入損失が小さくなるように L_2 , W_1 , W_2 と各Portの幅を決定した.

Fig.3に設計した段構造MMIにTE, TMモード光をそれ ぞれ入射したときのビーム伝搬法における解析結果と各 ポートにおける挿入損失を示す.この結果から,TEモー ド光について消光比約22 dB, TMモード光について約50 dBの消光比が得られることがわかる.TEモードの消光比 がTMモード光に比べて小さいのは,段構造の角部での散 乱損失がやや大きいためであり,改善の余地がある.

上記のTEモード光における損失が大きい課題に対し, Fig.4に示すテーパー構造の導入による損失低減を試みた. テーパー構造により,上記で述べたTEモード光の損失原 因である角部での散乱損失を低減するためである.その 結果,TEモードの挿入損失は3.65 dBとなり,約0.4 dB改 善できることがわかった.

謝辞

本研究の一部は科研費・基盤研究(B)(24360025)の援助を 受けて行われた.

参考文献

- [1] Y. Huang et al., Opt. Commun. 307, 46 (2013).
- [2] B. M. A Rahman et al., Appl. Phys. B 73, 613 (2001).
- [3] T. Arakawa et al., Jpn. J. Appl. Phys. 50, 032204 (2011).

Fig. 1. Schematic top view of proposed multi-width MMI mode splitter.

Fig.2. Dependence of insertion loss on length L_1 at Output ports.

Fig.3. BPM analysis results of mode splitting characteristics for (a) TM mode, (b) TE mode.

Fig.4. Tapered structure for reduction of insertion loss of TE mode light.