Magnetization switching by two successive voltage pulses

Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ. 1, CSIS, Tohoku Univ. 2, The Univ. of Electro-Communications 3, WPI-AIMR, Tohoku Univ. 4

○S. Kanai1*, H. Sato2, M. Yamanouchi1,2, S. Ikeda1,2, Y. Nakatani3, F. Matsukura2,4, and H. Ohno1,2,4

*E-mail: set273@riec.tohoku.ac.jp

We reported magnetization (M) reversal in magnetic tunnel junction (MTJ) with Ta/CoFeB/MgO by the application of either electric field or current (spin transfer torque) pulse. [1,2] Here, we demonstrate a new scheme for M switching, in which the advantages of E-induced and STT switching are combined.

A stack structure, sapphire substrate/Ta/Ru/Ta/Co$_{20}$Fe$_{60}$B$_{20}$(0.9 nm)/MgO(1.3 nm)/Co$_{20}$Fe$_{60}$B$_{20}$(1.8 nm)/Ta/Ru, is sputtered and fabricated into a 40-nm-diameter MTJ between coplanar strip lines by electron beam lithography and Ar ion milling. Device is annealed at 300°C for 1 hour in vacuum (10^-6 Torr) under magnetic field perpendicular to the plane. All magnetic layers possess perpendicular easy axis. The product of device area and resistance is $14 \Omega \mu$m2, and tunnel magnetoresistance ratio is 125%.

Magnetic easy axis of free (top) layer switches from perpendicular to in-plane during the application of voltage pulse V_E with amplitude of +0.7 V and duration of t_E. The change of easy axis direction induces M precession around in-plane component of external magnetic field. The probability of V_E-induced M switching takes the highest value (~100%) at which t_E is nearly a half of precession period (~1.25 ns in the present device). The switching probability is sensitive to t_E, and that over 90% is obtained only for $t_E = 1.25\pm0.15$ ns. For the same device, we induce also STT-M reversal by the application of voltage pulse V_{STT} with amplitude ±0.5 V and duration of t_{STT}. The probability of V_{STT}-induced M switching exceeds 90% when t_{STT} is longer than ~10 ns.

We propose a new scheme for M switching by the application of successive two voltage pulses, V_E and V_{STT}, where we expect that M precession is induced by V_E and that the final M direction is determined by V_{STT}. Figure indicates the switching probability from as functions of t_E and t_{STT}. The result shows that one can obtain broader t_E range with high switching probability than that solely by V_E, and shorter switching time than that solely by V_{STT}.

This work was supported in part by JSPS through FIRST program, a Grant-in-Aid for JSPS Fellows, a Grant-in-Aid for Scientific Research (No. 23360002) from JSPS, and Research and Development for Next-Generation Information Technology of MEXT.

References

Figure: Contour mapping of magnetization switching probability from parallel (P) to anti-parallel (AP) state as functions of two successive voltage pulse durations. t_E is duration for the first voltage pulse (0.7 V) and t_{STT} for the second pulse (0.5 V).