遷移金属硫化物 $Ni_{1-x}Tr_x$ SbS の熱電物性と第一原理電子状態計算

Thermoelectric properties and first-principles calculation of transition metal sulfides $Ni_{1-r}Tr_rSbS$

○宮田 全展¹, 西野 俊佑¹, 山本 晃生², 尾崎 泰助^{1,3}, 竹内 恒博^{2,4}, 小矢野 幹夫¹ (1. 北陸先端大, 2. 豊田工大, 3. 東大物性研, 4. JST-さきがけ)

°M. Miyata¹, S. Nishino¹, A. Yamamoto², T. Ozaki^{1, 3}, T. Takeuchi^{2, 4}, M. Koyano¹

(1. JAIST, 2. Toyota Technological Institute, 3. ISSP, 4. JST-PRESTO)

E-mail: s1540016@jaist.ac.jp

我々は新しい硫化物熱電材料の探索を目的として、ウルマナイト NiSbS とその置換系の物性を実験と理論の両面から研究している. [1] 今回は Ni サイトを Fe または Co で置換した Ni_{1-x} Tr_x SbS

(Tr = Fe, Co)の物性と電子状態について報告する. 測 定 に 用 い た $\text{Ni}_{1-x}\text{Fe}_x\text{SbS}$ $(0 \le x \le 0.1)$, $\text{Ni}_{1-x}\text{Co}_x\text{SbS}$ $(0 \le x \le 0.5)$ 多結晶は溶融法で作製し, 3–340 K の温度領域で電気抵抗率 ρ , 熱電能 S, 熱伝導率 κ , ホール係数 R_H および磁化率 χ の温

Figure 1 に S の温度依存性を示す。母体および Fe, Co で置換した試料は、低温で正の S を示し 温度上昇に伴い符号が負に転じる。Fe, Co 置換により、高温側の|S|は母体に比べ減少する。

度依存性を測定した.

 $Ni_{1-x}Tr_xSbS$ (Tr=Fe, Co; $0 \le x \le 0.25$)の詳細な電子状態を調べるため,第一原理電子状態計算を行った. Figure 2 にフェルミ準位 E_F 近傍で支配的な,Tr3d-S3p 混成軌道の部分状態密度(PDOS)を示す.この混成軌道は遷移金属(Fe, Co, Ni)の 3d 軌道と硫黄 S の 3p 軌道から成る.Co, Fe 置換系の E_F は母体に比べ,それぞれ約 100 meV,250 meV 低下する.置換系では E_F 近傍の DOS の傾きの絶対値が減少していることが分かる.この結果は(Fig.1)の要因である. E_F 近傍の状態密度ピークに注目すると,Fe 置換では 1 本,Co 置換では 2 本に分か

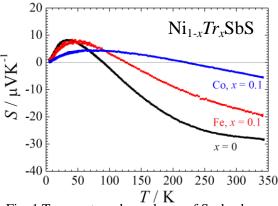


Fig. 1 Temperature dependence of Seebeck coefficient S of Ni_{1-x} Tr_x SbS (Tr = Fe, Co).

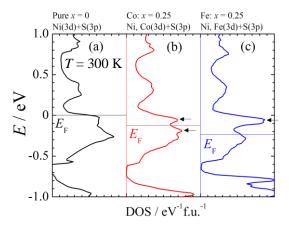


Fig. 2 Partial density of states of $Ni_{1-x}Tr_xSbS$ (Tr = Fe, Co; $0 \le x \le 0.25$) for the hybrid orbital between S-3p and transition metal 3d orbitals.

れ、Co、Fe 置換系でバンド分裂の様相が異なる。Co 置換系では E_F を挟んでバンドが分裂するため、 L_F より L_F を挟んでバンドが分裂するため、 L_F を持んでバンドが分裂するため、 L_F を持んでバンドが分裂すると

[1] 宮田, 尾崎, 西野, 小矢野, 第 62 回応用物理学会春季学術講演会 (13a-A22-3).