Thermoelectric properties of bulk β-Indium sulfide with Mg doping Yue-Xing Chen¹, Koichi Kitahara¹, Tsunehiro Takeuchi^{1,2} Toyota Technological Institute¹, PRESTO, Japan Science and Technology Agency² E-mail: xingchen@toyota-ti.ac.jp

Abstract

An *ab initio* calculation indicated that the low temperature phase of indium sulfide, β -In₂S₃ has a potential to be good thermoelectric materials. The thermoelectric properties of Mg-doped β -In₂S₃ above room temperature were investigated at the first time.

The bulk samples of $In_{2-x}Mg_xS_3$ (x = 0, 0.05, 0.1, 0.2 and 0.3) were prepared by pulsed current sintering using the powder obtained from the solid reaction of raw elements in a sealed silica tube. All bulk samples showed high relative density over than 90%. The powder X-ray diffraction (XRD) patterns of all samples were well indexed as β -In₂S₃ structure without any second phases. The peaks shift to the lower diffraction angles indicating the increasing of lattice parameter of magnesium-substituted samples. This result sounds strange because ionic radius of magnesium is smaller than indium, and presumably indicates the simultaneous formation of vacancies on magnesium-substitution.

The thermoelectric properties of Seebeck coefficient (*S*), electrical resistivity (ρ), and thermal conductivity (κ) were measured at temperature range from 300 K to 700 K. The maximum power factor (S^2/ρ) for non-doped In₂S₃ is 426.5 μ W/mK², which was slightly of higher than that magnesium substituted samples at the same temperature. On the other hand, the thermal conductivity κ at 300 K significantly decreased from 1.64W/mK for the non-doped sample to 1.10 W/mK for the sample with x = 0.2. (Fig.1) The reduction in κ may attribute to the increasing of point defect scatting caused by the anharmonic oscillation of atoms in the vicinity of vacancies. The maximum dimensionless figure of merit $ZT = S^2 T / \rho \kappa$ for non-doped In₂S₃ and magnesium doped sample (x = 0.1) were 0.38 and 0.45 at 700 K, respectively.

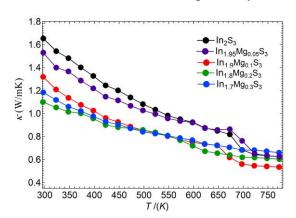


Fig. 1 Temperature dependence of thermal conductivity observed for $In_{2-x}Mg_xS_3$ (x = 0, 0.05, 0.1, 0.2 and 0.3).