Laser Requirements for Efficient X-Ray Generation by Relativistic Electron Spikes

JAERI, Osaka University, P. N. Lebedev Physical Institute, Rutherford Appleton Laboratory, The Graduate School for the Creation of New Photonics Industries


E-mail: pirozhkov.alexander@jaea.go.jp

High-order harmonics from relativistic electron spikes [1, 2] are a source of bright coherent x-rays produced by multi-terawatt relativistic-irradiance (>10^{18} W/cm^2) femtosecond lasers focused onto gas jet targets. Our experiments with the J-KAREN laser [3] demonstrate that the harmonics generation efficiency strongly depends on laser pulse quality and in particular on the focal spot shape. Here we establish requirements for the high-power laser needed for efficient harmonics generation. Specifically, the focal spot should be close to a diffraction-limited shape with the Strehl ratio greater than 0.5. This requires a rms wavefront error of much smaller than 100 nm, assuming a noise-like high-frequency wavefront error distribution. In addition, the angular dispersion must be kept smaller than a fraction of the diffraction divergence. For typical 100 to 300 mm diameter high-power laser beams, this requires angular dispersion below the μrad level, i.e. < 10^{-2} μrad/nm angular chirp for typical 50 nm bandwidths.