InP(001)基板上に熱処理によって作製したMnPの構造、磁気、電気的物性

Structural, magnetic, and electrical properties of thermally-formed MnP electrodes on InP(001)

Guibin Song, Ryosho Nakane, Masaaki Tanaka

E-mail: song@cryst.t.u-tokyo.ac.jp

A promising way to realize large spin-dependent characteristics of metal-oxide-semiconductor field-effect transistors (spin MOSFETs) [1] is to fabricate spin MOSFETs with a very short channel length. Recently, III-V-based MOSFETs with very short channel lengths were successfully fabricated by a self-align way [2], in which the most important two processes are i) to form metallic source/drain (S/D) electrodes by annealing of metal/III-V structures and ii) to etch un-reacted (unwanted) metal selectively after annealing. Thus, if ferromagnetic S/D electrodes are formed by these processes, we can fabricate III-V-based spin MOSFETs with a very short channel length.

Here, we report structural, magnetic, and electrical properties of Mn1-xPx alloy electrodes formed by annealing of Mn/InP(001) structures. To realize spin MOSFETs by a self-align way, following issues were investigated: formation of ferromagnetic MnP with orthorhombic crystalline structure, selective etching of residual Mn and unwanted Mn1-xPx phases after annealing, and electrical stability of MnPx/InP(001) Schottky junctions. We used n-type InP(001) wafers with a donor concentration of 1 × 10^{17} cm^{-3} as substrates. Under an ultra-high vacuum, 20-nm-thick Mn layers were deposited at room temperature on S-terminated substrates using a Knudsen cell. After exposed to air, the Mn/InP structures were annealed in a N2 atmosphere at T_{A} (= 300, 350, 400, and 450°C) for t_{A} (= 5, 10, 30, and 60 min).

Figure 1 shows X-ray diffraction (XRD) patterns of the samples (T_{A} = 300, 350, 400, and 450°C, t_{A} = 60 min) obtained with the θ-2θ method: a ferromagnetic MnP (210) peak is clearly seen for all the samples, whereas a MnP (201) peak is also seen for the samples with T_{A} = 300 and 350°C. After etching of all the samples with 7% HCl solution, the MnP (210) peak remained unchanged, whereas the unwanted MnP (201) peak vanished. Only the MnP (210) peak was also detected for other HCl-etched samples (T_{A} = 400°C, t_{A} = 5, 10, 30, 60 min) (not shown). Figure 2 shows magnetization per unit area (M) vs. in-plane magnetic field (H) measured at 10 K for HCl-etched samples (T_{A} = 400°C, t_{A} = 5 and 60 min), where the direction of H was parallel to the in-plane [110]InP. The hysteric loops in Fig. 2 for both the samples indicate ferromagnetic properties, and very similar loops were also obtained for other HCl-etched samples (T_{A} = 400°C, t_{A} = 10 and 30 min). Temperature dependence of spontaneous magnetization for all the sample (T_{A} = 400°C) showed Brillouin function-like shapes with the Curie temperature of ~ 300 K, and clear hysteric loops were also confirmed at 280 K. Figure 3 shows current density-voltage (J-V) characteristics at room temperature of Schottky junction diodes of the samples (T_{A} = 400°C, t_{A} = 5 and 60 min), and the inset shows the cross-sectional device structure and the forward bias geometry. Since the J-V characteristics did not vary in the same sample (T_{A} = 400°C, t_{A} = 5, 10, 30, and 60 min), the MnP/InP junctions were found to be electrically stable. Whereas the J-V characteristics were the same for the samples (t_{A} = 10, 30, 60 min), J is smaller for the sample (t_{A} = 5 min). Although further study is needed, the Schottky barrier height seems to be low (~0.3 eV) for electrons in the samples (t_{A} = 10, 30, and 60 min).

In summary, the MnP formed with T_{A} = 400°C, t_{A} = 5 and 60 min is promising for the application to InP-based spin MOSFETs with a short channel length.

Acknowledgement: This work is supported by Grant-in-Aids for Scientific Research including Exploratory Research, the Specially Promoted Research, the Project for Developing Innovation Systems of MEXT. Part of this work was carried out under the Cooperative Research Project Program of RIEC, Tohoku University.


Fig. 1. XRD patterns of annealed Mn/InP(001) with t_{A} = 60 min and T_{A} = 300, 350, 400, and 450°C before etching.

Fig. 2. Magnetic moment per unit area (M) vs. in-plane magnetic field measured at 10 K of the samples formed with T_{A} = 400°C, t_{A} = 5 and 60 min, after etching with HCl.

Fig. 3. J-V characteristics of MnP/n-InP diodes in the samples formed with T_{A} = 400°C, t_{A} = 5 and 60 min.