Shape-Controlled CH₃NH₃PbI₃ Nanoparticles for Planar Heterojunction Perovskite Solar Cells

Kanazawa Univ.¹, Research Center for Sustainable Energy and Technology.²,

°<u>Md. Shahiduzzaman</u>^{1*}, Kohei Yamamoto¹, Yoshikazu Furumoto¹, Takayuki Kuwabara^{1,2}, Kohshin Takahashi^{1,2} and Tetsuya Taima^{1,2*}

*E-mail: sohel_doc@stu.kanazawa-u.ac.jp; taima@se.kanazawa-u.ac.jp

Hybrid organic/inorganic perovskites such as methylammonium lead iodide (CH₃NH₃PbI₃) have been regarded as a potential candidate for thin-film photovoltaic because of their excellent cost- and energy-efficient light absorption. In this work, we have prepared CH₃NH₃PbI₃ nanoparticles (NPs) on the TiO_x/indium tin oxide glass substrates by using a simple spin coating method to control the size and shape of NPs. The effect of varying weight percentages (wt%) of 1-hexyl-3-methylimidazolium chloride ionic liquid (IL) have also been investigated. Analysis of the films revealed spherical CH₃NH₃PbI₃ NPs morphology, as shown in Fig. 1 (a, b and c), in the presence of 1, 3 and 7 wt % IL with respective diameters of 540, 350 and 600 nm. In contrary, addition of 10 wt% IL has resulted in irregular aggregation of CH₃NH₃PbI₃ blocks as shown in Fig. 1d, which can be attributed to the viscosity of the IL-DMF medium. Measurements Photovoltaic properties have also been conducted to understand the properties of the NPs materials in relation to increasing IL contents. It has been confirmed that the power conversion efficiency (PCE) has changed with varying CH₃NH₃PbI₃ NPs sizes, shapes and morphology. Optimization of the concentration with the 3 wt% of IL, we achieved CH₃NH₃PbI₃ NPs having more uniform shape, size, morphology which showed maximum PCE. Currently, we assume a hindering effect followed by the impact on charge dissociation, transport, and/or recombination on the device performances due to the residual IL content within the CH₃NH₃PbI₃ NPs. Hence, performance improvement experiments are underway to ensure the complete removal of IL-contents from the CH₃NH₃PbI₃ NPs films.

Fig. 1 The SEM images of the CH₃NH₃PbI₃ NPs which were prepared in the presence of varying wt% of IL: (a) 1, (b) 3, (c) 7, and (d) 10; (e) J-V characteristics processed with varying wt% of IL.

Keywords: CH₃NH₃PbI₃; Spherical NPs; Spin-coating method; Ionic liquid; Varying concentration