Voltage-induced magnetic anisotropy change in FelMgO tunnel junctions investigated by x-ray absorption spectroscopy

¹阪大院基礎工, ¹JASRI/SPring-8

^O松田健彰¹, 三輪真嗣¹, 田中和仁¹, 小谷佳範², 後藤穣¹, 中村哲也²,

水落憲和¹, 鈴木義茂¹

¹Osaka Univ., ²JASRI/SPring-8

^oK. Matsuda¹, S. Miwa¹, K. Tanaka¹, Y. Kotani², T. Nakamura², M. Goto¹,

N. Mizuochi¹, and Y. Suzuki¹

E-mail: matsuda@spin.mp.es.osaka-u.ac.jp

Voltage-induced magnetic anisotropy change has attracted great attentions as a low energy magnetization control methods for spintronics devices. One possible origin of the anisotropy change is modulation of the electron filling at the surface of ferromagnets.[1] In addition, voltage-induced surface oxidation/reduction [2,3] may influence the interfacial magnetic anisotropy. To discuss in detail, in this study, we have prepared Fe/MgO tunnel junctions and have performed x-ray absorption spectroscopy (XAS) under external voltage.

MgO(100)substrate| MgO(5 nm)| V(30 nm)| Fe(0.65 nm)| MgO(2 nm) multilayer was fabricated by molecular beam epitaxy methods. (Fig.1) After breaking vacuum, we deposited $SiO_2(5 \text{ nm})$ by sputtering and Cr(2 nm)|Au(5 nm) by electron beam deposition. The film was patterned into tunnel junctions of 80 μ m in diameter by using photolithography and Ar ion milling. Fig.2 shows XAS spectra. The XAS was conducted at BL25SU beamline of SPring-8. We measured fluorescence yield using silicon drift detector (SDD). Magnetic field was applied tilted 30 degrees from out-of-plane. As shown in Fig.2, spectrum shape of Fe L_2 ,

 L_3 edges were unchanged with changing the polarity of voltage (± 4 V). This result indicates that voltage-induced anisotropy change in the Fe|MgO tunnel junction was independent of voltage driven surface oxidization/reduction at the Fe/MgO interface.

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan) [1] C. G. Duan et al., PRL 101, 137201(2008) [3] F. Bonell et al., APL 102, 152401 (2013)

Fig.1 Sample structure

[2] K. Leistner et al., PRB 87, 224411(2013)