Directly Modulated Membrane Lasers on Si

Shinji Matsuo^{1,2}, Takuro Fujii^{1,2}, Koji Takeda^{1,2}

¹ NTT Device Technology Laboratories, NTT Corporation ² NTT Nanophotonics Center, NTT Corporation E-mail: matsuo.shinji@lab.ntt.co.jp

1. Introduction

Membrane lasers, in which a thin active region is sandwiched by low-index materials, are essential for achieving extremely low power consumption with high-speed direct modulation. These devices are expected to be key components of datacom and computercom interconnects. In this context, we have already developed a photonic crystal laser [1, 2] and a membrane DFB laser [3], where the use of a buried heterostructure (BH) provides both good carrier confinement and good thermal conductivity. Fabrication cost is also an important issue. To reduce it, we have to employ large-scale wafers and Si CMOS fabrication technologies. In this talk, we will describe the fabrication of a membrane laser with its heterogeneous integration on Si substrate.

2. Membrane laser on SiO₂/Si substrate

Figure 1 shows the procedure for fabricating the membrane laser on SiO₂/Si substrate. We grow an InP-based MQW layer as an active region on InP substrate. InP and SiO₂/Si substrates are bonded to each other by employing an O₂-plasma-assisted direct-bonding technique [Fig. 1(a)]. After the InP substrate has been removed, remaining III-V layers, including the MQW layer, are used as a template for epitaxial growth [Fig. 1(b)]. Then, the MQW layer is removed down to the InP layer, except for the mesa stripe region, which is defined by an SiO₂ mask, and InP is selectively grown to bury the active region on the InP layer [Fig. 1(c)]. Zn-thermal diffusion and Si-ion implantation are employed to fabricate p- and n-type doping regions, respectively [Fig. 1(d)]. Finally, we deposit electrodes and fabricate the surface grating [Fig. 1(e)].

Fig. 1. Fabrication procedure for membrane laser.

An advantage of the proposed fabrication method is that epitaxial growth in the lattice-mismatch condition is not required when fabricating the BH. However, the difference in thermal expansion coefficients between the SiO₂/Si substrate and template introduces strain, which degrades the crystal quality of both the template and InP layer. To solve this problem, reducing template thickness is essential. Figure 2 shows photoluminescence (PL) maps after annealing at 610°C, which is the same as the growth temperature, for various template thicknesses ranging from 250 to 850 nm on SiO₂/Si substrate. As the maps show, there was no degradation in PL when the template thickness was 250 nm, which is consistent with the calculated critical thickness.

various template after annealing at 610 °C for

We fabricated membrane DFB lasers on SiO₂/Si substrate using the template thickness of 250 nm. Figure 3 shows the relaxation oscillation frequency of a fabricated DFB laser with 73- μ m cavity length as a function of the square root of bias current above threshold for operating temperatures of 25, 50, and 75°C. The respective slopes are 7.7, 7.0 and 5.5 GHz/mA^{1/2}.

Fig. 3. Modulation efficiency of membrane DFB laser.

3. Conclusions

We demonstrated membrane-laser fabrication using BH growth on Si substrate. A fabricated laser exhibits high modulation efficiency.

References

- [1] S. Matsuo et al., OpEx. 20 (2012) 3773.
- [2] K. Takeda et al., Nat. Photon. 7 (2013) 569.
- [3] S. Matsuo et al., J. of Lightwave Tech. 33 (2015) 1217.