Absolute distance measurement by two-color heterodyne pulse-topulse interferometry of optical frequency combs

Lei Liao, Guangyao Xu and Guanhao Wu^{*} State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China

ABSTRACT

Optical frequency comb has led to revolutionary progress in absolute distance measurement. In our previous study, we have reported a synthetic-wavelength interferometry of optical frequency combs to improve the accuracy of pulse-to-pulse alignment [1]. However, the system that requires second harmonic generation and two acousto-optic modulators is complicated for practical applications. In the present study, we developed a compact heterodyne pulse-to-pulse interferometer for absolute distance measurement.

Figure 1 illustrates the system layout configured for our measurements. The approach utilizes an optical frequency comb of Er-doped mode-locked fiber laser as the light source. The system is based on an unbalanced Michaelson interferometer. We use two band-pass filters to select two close wavelengths (λ_a =1550 nm and λ_b =1560 nm) to generate a synthetic wavelength of 240 µm. Long fiber is used to expand the dynamic range of distance measurement. With this system we made a step-by-step distance measurement up to 0.5m to confirm the measurement dynamic range expansion and evaluate the ranging accuracy. By using synthetic wavelength as a bridge between the interference intensity peak-finding method and the heterodyne interferometric phase measurement, we can achieve distance measurement in nanometer level.

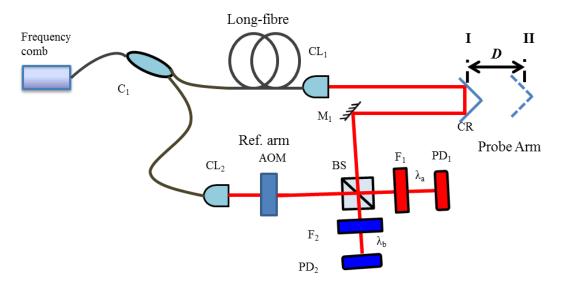


Fig. 1 Heterdyne pulse-to-pulse interferometer with wide dynamic range of measurement .C: coupler, CL: collimation lens, CR: corner reflector, M: mirror, AOM: acousto-optic modulator, BS: beam splitter, F: band-pass filter, PD: photodetector

REFERENCES

[1] G. Wu, M. Takahashi, H. Inaba, K. Minoshima. "Pulse-to-pulse alignment technique based on syntheticwavelength interferometry of optical frequency combs for distance measurement," Opt. Letters 38(12), 2140-2143 (2013).

Keywords: Two-color, heterodyne interferometry, synthetic wavelength, optical frequency comb

*guanhaowu@mail.tsinghua.edu.cn

This work was supported by the Special-funded Program on National Key Scientific Instruments and Equipment Development of China (2011YQ120022) and the Beijing Higher Education Young Elite Teacher Project (YETP0085).