Temperature dependence of spin-dependent tunneling conductance for the parallel configuration of Co$_2$MnSi MTJs with high spin polarization

Bing Hu, Kidist Moges, Hongxi Liu, Yusuke Honda, Tetsuya Uemura, and Masafumi Yamamoto

Graduate School of Science and Technology, Hokkaido University

E-mail: hu-bing@nsed.ist.hokudai.ac.jp

A highly efficient spin source is essential for spintronic devices. We recently showed that controlling defects through the film composition is critical to retain the half-metallicity of ternary Heusler alloy Co$_2$MnSi (CMS) and quaternary alloy Co$_4$(Mn,Fe)Si (CMFS) [1–3]. As a result, we demonstrated a giant TMR ratio of up to 2610% at 4.2 K (429% at 290 K) for CMS/MgO/CMS MTJs (CMS MTJs) and CMFS MTJs [1,3]. The purpose of the present study was to clarify the key mechanisms that determine the temperature dependence of the spin-dependent tunneling conductance $G (= I/V)$, in particular, for the parallel configuration (P), G_P of CMS MTJs.

The preparation of fully epitaxial CMS MTJs with various values of α in Co$_2$Mn$_{1-x}$Si$_x$ electrodes has been described elsewhere [1]. G_P was measured by a dc four-probe method at temperatures from 4.2 to 290 K at a small bias voltage of 2 mV. The TMR ratio was defined as $\text{TMR} = (G_P - G_N)/G_N$.

Figure 1 plots the T dependence of the normalized G_P of CoFe-buffered CMS MTJs with various Mn compositions α in Co$_2$Mn$_{1-x}$Si$_x$ electrodes. The TMR ratios at 4.2 K of these MTJs significantly increased with increasing α from 574% for Mn-deficient $\alpha = 0.73$ to 2011% for $\alpha = 1.30$ [3]. G_P of these MTJs decreased with increasing T in a T range from T_1 (~25 K) to T_2 (~220 K). Then, it increased for $T > T_2$. Furthermore, the degree of the decrease in the normalized G_P at T_2 became larger for the MTJ that showed the larger TMR at 4.2 K. In contrast, the normalized G_P of a CoFe/MgO/CoFe MTJ (CoFe MTJ) that showed a lower TMR of 382% at 4.2 K (258% at 290 K) slightly increased with increasing T from 4.2 K to around 100 K and then increased with T from around 100 K to 290 K. The T dependence of G_P of the CoFe MTJ can be explained by the Zhang’s model in which a spin-flip, inelastic tunneling process via thermally excited magnon is taken into account [4]. Note that the Zhang’s term provides an increase in G_P and G_N with increasing T.

To understand the T dependence of G_P of CMS MTJs with α from 0.73 to 1.30 that showed high TMR ratios ranging from 574% to 2011%, we take into consideration two tunneling processes; one is the Zhang’s term [4] and another is the Shang’s term [5]. In the latter term, only spin-conserved elastic tunneling process is taken into account but the T dependence of spin polarization (SP) is introduced. Given this understanding, the $G_P(T)$ for the CMS MTJs were fitted with the conductance at $T = 0$, and the additional terms from the Shang’s process and the Zhang’s process. This analysis is reasonable because the contribution to G_P from the Zhang’s term decreases for MTJs with higher SP, resulting in a relative increase in the contribution of the Shang’s term to $G_P(T)$ for MTJs with higher SP. These fittings for the CMS MTJs well reproduced the experimental $G_P(T)$ with reasonable values of the parameters involved in the fitting. In conclusion, it was clarified that the characteristic T dependence of CMS MTJs showing giant TMR ratios is highly influenced by the half-metallicity of the CMS electrodes.

References