
Reduction of bias current density using Heusler alloy spin injection layer in mag-flip spin-torque oscillator devices for microwave-assisted magnetic recording

National Institute for Materials Science, Tsukuba, Japan, [°]S. Bosu, H. Sepehri-Amin, Y. Sakuraba, M. Hayashi, and K. Hono E-mail: BOSU.Subrojati@nims.go.jp

The main challenges of microwave assisted magnetic recording (MAMR) for next generation high areal density magnetic recording are development of a mag-flip spin torque oscillator (STO) [1] consisting of the in-plane magnetized field generating layer (FGL) and the perpendicular magnetized spin-injection layer (SIL) that is able to generate a large H_{ac} from FGL with a frequency over 20 GHz at small bias current density $J_C < 1.0 \times 10^{12} \text{ A/m}^2$ [2]. We have investigated the oscillation behavior of a mag-flip STO device (Fig. 1(a)) with 100 nm diameter circular pillar using highly spin polarized ferromagnetic Heusler alloy, Co₂Fe(Ga_{0.5}Ge_{0.5}) (CFGG), perpendicularly magnetized with FePt as SIL to reduce J_C and also compared with a typical ferromagnetic alloy CoFe SIL. ΔR - H_{ex} curves in Fig. 1 (b) and (c) for CFGG and CoFe SILs, respectively, for various negative dc bias currents I_{dc} with H_{ex} applied perpendicular to film plane ($\theta \sim 0^\circ$) reveals higher MR values for CFGG SIL than CoFe SIL. Moreover, for CFGG SIL when $|I_{dc}| > 5.5 \text{ mA}$ a sudden jump to the intermediate resistance state at high H_{ex} region in the ΔR - H_{ex} curves indicates excitation of magnetization dynamics by the reflected spin current from the SIL interface. On the other hand, for

CoFe SIL intermediate resistance state appears for $|I_{dc}| > 13$ mA. Such difference in MR and I_{dc} seems to be due to the higher spin polarization in CFGG than CoFe. Figures 1(d), and (e) show, ΔR - H_{ex} for $|I_{dc}| > 9$

mA, and corresponding rf signals for CFGG SIL respectively, with H_{ex} slightly tilted $\theta \sim 7^{\circ}$ from the film normal. A maximum $f \sim 12$ GHz has been observed for $H_{ex} \sim 10$ kOe, which systematically decreases following Kittle's equation. Moreover, the blue shift of f with I_{dc} (not shown here) also confirms detection of oscillation perpendicular to plane for the bias current density $J_{C} \sim 0.95$ to 1.15×10^{12} A/m², which is close to the desired J_{C} for application.

References: [1] J. Zhu *et al.*, IEEE Trans. Magn. 44, 125 (2008), [2] A. Takeo *et al.*, Intermag Conference 2014 (AD-02) Acknowledgement: We acknowledge financial support from SRC MAMR project.