大気圧プラズマ CVD 法を用いた β - Ga_2O_3 薄膜の低温成長

Low temperature growth of β -Ga₂O₃ films by atmospheric pressure plasma enhanced CVD 阪府大¹,積水化学²

○木口 拓也¹, 野瀬 幸則¹, 髙田 賢志¹, 上原 剛², 藤村 紀文¹

Graduate School of Eng. Osaka Prefecture Univ.¹, Sekisui Chemical Co., LTD.²

°T.Kiguchi¹, Y. Nose ¹, K. Takada¹, T. Uehara², N. Fujimura¹

E-mail: fujim@pe.osakafu-u.ac.jp

[はじめに]

近年、ワイドバンドギャップ半導体である β -Ga₂O₃(E_g = 4.9 eV)が注目されている ¹⁾。 β -Ga₂O₃は1アニオン系の単純酸化物であるものの 4 配位と 6 配位の Ga が交互に積層する複雑な構造を有している。その薄膜化量産プロセスを考えると CVD 法が有利であるため、MOCVD²⁾、ミスト CVD³⁾等の手法を用いて様々な検討が行われているが、そのような熱エネルギーのみを用いた高温での成長方法では Ga の再蒸発による点欠陥の生成が懸念される。そこで、本研究では、膜中の欠陥を低減し、かつ低温成長が期待できる大気圧非平衡プラズマ CVD プロセス(AP-CVD)に着目して研究を行っている。今回、成長温度を変化させて作製した薄膜の結晶性や実効ドナー密度との相関について検討した。

[実験方法と結果]

Ga 原料には Tris[2,4-octanedionato]gallium[Ga(OD)3] を用いた。内圧 50 kPa に維持した製膜チャンバ内の平行平板電極間に $V_{pp}=4.0$ kV、180 kHz の交流電圧を印加し、 N_2 , O_2 , $Ga(OD)_3$ からなる混合ガスを非平衡プラズマ化した。 基板には Sn をドーピングした (-201) β -Ga2O3 を用いた。窒素、酸素混合ガスの総流量に対する酸素の割合を 90 %と固定し、成長温度を 350 ~ 550° C の範囲で変化させた。成長後、XRD, RHEEDを用いた構造解析やホール効果測定を行った。さらに、薄膜表面にショットキー電極として Pt を基板裏面にオーミック電極として In を用いて C-V 測定を行い、実効ドナー密度を求めた。

Fig.1 に 400 °C で製膜したサンプルの実効ドナー密度の深さ方向の分布を示す。90 nm 付近に基板と薄膜の界面を確認でき、基板および薄膜の実効ドナー密度はそれぞれ 8.3×10¹⁸ cm⁻³、1.3×10¹⁷ cm⁻³ と減少している。Fig.2 に薄膜領域の実効ドナー密度の成長温度依存性を示す。成長温度の減少に伴って、実効ドナー密度が減少している。当日は、成長温度の変化に伴う、薄膜の結晶性や不純物量に関しても議論する。

[参考文献]

- 1) M. Higashiwaki *et al.*: Appl. Phys. Lett. **103**, 123511 (2013).
- 2) G. A. Battiston et al.: Thin Solid Films 279, (1996) 115.
- 3) D. Shinoharaetal., Appl.Phys.Lett.47,(2008)7311.

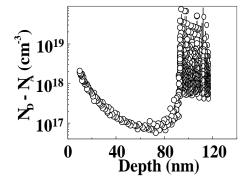


Fig.1 Depth profile of N_D - N_A for the sample fabricated at the growth temperature of 400 °C as a function of the depth.

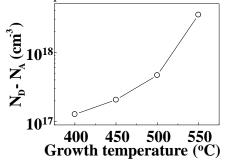


Fig.2 Change in the N_D - N_A as a function of the growth temperature.