Terahertz spectroscopy of single $Ce@C_{82}$ molecules using sub-nm scale gap electrodes

¹Institute of Industrial Science and ²INQIE, University of Tokyo [°]Shaoqing Du¹, Kenji Yoshida¹, Ya Zhang¹, Kazuhiko Hirakawa^{1,2} E-mail: sqdu@iis.u-tokyo.ac.jp

Terahertz (THz) spectroscopy is a powerful tool for clarifying electronic structures and vibrational dynamics of various kinds of molecules. However, it is a great challenge to greatly exceed the diffraction limit [1] and perform single molecule spectroscopy, because there is a huge size difference (a factor of $\sim 10^5$) between the THz wavelength ($\sim 100 \ \mu m$) and the size of single molecules ($\sim 1 \ nm$).

In this work, we propose a novel method for performing THz spectroscopy on single molecules. THz vibrational spectra of a single $Ce@C_{82}$ molecule have been measured by using a single molecule transistor (SMT) geometry, which consists of a single molecule and metal nanogap electrodes, as a THz detector. The inset of Fig. 1(b) shows an SEM image of a fabricated $Ce@C_{82}SMT$ structure. We created a sub-nm gap in a metal nanojunction by using electromigration. By using the nanogap electrode as a THz antenna, this sample structure allows us to overcome the diffraction limit and focus THz radiation onto a single molecule. Figure 1(a) shows the Coulomb stability diagram of a $Ce@C_{82}$ SMT. The crossing pattern indicates that we capture a single molecule in the nanogap. THz signal of a single Ce@C₈₂ molecule was obtained by measuring the THz-induced photocurrent in the SMT sample. Figure 1(b) shows the obtained THz spectra of a single $Ce@C_{82}$ molecule. Broad photocurrent peaks appear around 50 cm⁻¹ and 110 cm⁻¹. Although the origin of these peaks is not clear at present, we think it is related with dynamical motion of the encapsulated Ce atom in the C_{82} cage [2]. This is the first successful measurement of THz spectra of a single molecule.

Reference: [1] Y. Zhang et al, Nano Lett. **15**, 1166 (2015). [2] W. Andreoni and A. Curioni, Phys. Rev. Lett., **77**, 834 (1996).

Fig. 1 (a) Coulomb stability diagram measured on a Ce@C₈₂ SMT. White dash lines are eye guides for the Coulomb diamonds. (b) THz spectra measured near the charge degeneracy point ($V_{SD} = 0.1 \text{ mV}$, $V_G = -7.1 \text{ V}$) shown in Fig. 1(a). The resolution of the measurement was 16 cm⁻¹. The inset is an SEM image of a fabricated SMT integrated with a bow-tie antenna.