Effective Mass in Zinc Nitride Thin Films

Chubu Univ. °X. Cao, Y. Ninomiya, A. Sato, N. Yamada E-mail: jscaoxiang chubu@isc.chubu.ac.jp

INTRODUCTION: Zn_3N_2 is an *n*-type nitride semiconductor. We reported electrical properties of Zn₃N₂ polycrystalline films which had high mobilities(~85 cm²V⁻¹s⁻¹) [1]. To evaluate Zn_3N_2 as a semiconductor, research on effective mass (m^*) in Zn₃N₂ is still needed.

EXPERIMENTS: Zn₃N₂ films were grown on YSZ(100) heated at 100-250 °C by reactive sputtering technique. The Infrared transmittance (T) and reflectance (R) were measured using a FTIR spectrophotometer. We performed fitting analyses of T and R spectra using the Drude model (Drude fitting) in order to derive m^* .

RESULTS & DISCUSSION: All the films in this study were confirmed to be a degenerate semiconductor possessing n_e on the order of 10^{19} cm^{-3} . As seen in Fig. 1, T and R spectra of Zn₃N₂ epitaxial films clearly exhibited Drude-like behavior. The spectra could be reproduced well by using the Drude model (continuous lines in Fig. 1). In the Drude fitting procedure, plasma frequency (ω_p) and scattering time were used as fitting parameters. We calculated m^* values from $\omega_{\rm p}$ and carrier concentration (*n*_e). As shown in Fig. 2, m^* increased with an increase in n_e . Such behavior is usually interpreted in terms of non-parabolicity of the conduction band. We adopted a non-parabolic band model proposed by Pisarkiewicz et al. [4] to analyze n_e dependence of m^* . The solid line in Fig. 2 presents the best fit

Fig. 1 Infrared transmittance and reflectance for a Zn₃N₂ epitaxial film.

Fig. 2 Effective mass $[m^*(n_e)/m_0]$ as a function of carrier concentration $n_{\rm e}$. The solid curve represents the best fit obtained at $m_0^* = 0.073 m_0$.

of the non-parabolic model to the experimental data. From this result, the effective mass at the bottom of the conduction band (m_0^*) was deduced to be $m_0^* = 0.073m_0$ (m_0 denotes free electron mass). The m_0^* value is as small as those in GaAs and InN. These results suggest that Zn₃N₂ is a very promising as a high mobility semiconductor.

REFERENCES

- [1] Cao et al., J. Phys. Chem. C 119, 5327 (2015).
- [2] Yamada *et al.*, Jpn. J. Appl. Phys. **53**, 05FX01 (2014).
 [3] Suda *et al.*, J. Appl. Phys. **99**, 076101 (2006).
- [4] Pisarkiewicz et al., Thin Solid Films 174, 217 (1989).