Effective Mass in Zinc Nitride Thin Films
Chubu Univ. X. Cao, Y. Ninomiya, A. Sato, N. Yamada
E-mail: jscaoxiang_chubu@isc.chubu.ac.jp

INTRODUCTION: Zn$_3$N$_2$ is an n-type nitride semiconductor. We reported electrical properties of Zn$_3$N$_2$ polycrystalline films which had high mobilities (~85 cm2V$^{-1}$s$^{-1}$) [1]. To evaluate Zn$_3$N$_2$ as a semiconductor, research on effective mass (m^*) in Zn$_3$N$_2$ is still needed.

EXPERIMENTS: Zn$_3$N$_2$ films were grown on YSZ(100) heated at 100–250 °C by reactive sputtering technique. The Infrared transmittance (T) and reflectance (R) were measured using a FTIR spectrophotometer. We performed fitting analyses of T and R spectra using the Drude model (Drude fitting) in order to derive m^*.

RESULTS & DISCUSSION: All the films in this study were confirmed to be a degenerate semiconductor possessing n_e on the order of 10^{19} cm$^{-3}$. As seen in Fig. 1, T and R spectra of Zn$_3$N$_2$ epitaxial films clearly exhibited Drude-like behavior. The spectra could be reproduced well by using the Drude model (continuous lines in Fig. 1). In the Drude fitting procedure, plasma frequency (ω_p) and scattering time were used as fitting parameters. We calculated m^* values from ω_p and carrier concentration (n_e). As shown in Fig. 2, m^* increased with an increase in n_e. Such behavior is usually interpreted in terms of non-parabolicity of the conduction band. We adopted a non-parabolic band model proposed by Pisarkiewicz et al. [4] to analyze n_e dependence of m^*. The solid line in Fig. 2 presents the best fit of the non-parabolic model to the experimental data. From this result, the effective mass at the bottom of the conduction band (m_0^*) was deduced to be $m_0^* = 0.073 m_0$ (m_0 denotes free electron mass). The m_0^* value is as small as those in GaAs and InN. These results suggest that Zn$_3$N$_2$ is a very promising as a high mobility semiconductor.

REFERENCES