大気圧化学気相合成法による WS2 成長に及ぼす WO3 前駆体と硫化過程の影響

Effect of WO₃ precursor and sulfurization process on WS₂ crystals growth by atmospheric pressure CVD technique

名工大工 ⁰アムタ タンガラジャ、サチン シンデ、カリタ ゴラップ、 種村 眞幸

Nagoya Inst. Technol. ^OAmutha Thangaraja, Sachin M. Shinde, Golap Kalita, Masaki Tanemura

E-mail: ammuthangaraja@gmail.com

Individual monolayers of metal dichalcogenides are atomically thin two-dimensional crystals have attracted significant interest owing to their direct-bandgap property for nano electronics and optoelectronics applications. In this prospect, controllable synthesis of high quality WS_2 crystals by a chemical vapor deposition (CVD) process is of great importance. Here, we report the effect of sulfurization process and WO_3 precursor on WS_2 growth in an atmospheric pressure (AP) CVD. S powder was placed in the center of low temperature furnace and the WO_3 (2 and 10 mg) powder spread on SiO₂/Si substrate, which was kept in the small ceramic tube and placed in the center of high temperature furnace. S vapor was introduced with Ar flow rate of 80 sccm. Subsequently, the temperature of growth zone (SiO₂/Si substrate with WO_3 powder) was increased upto 750°C by the ramping rate 3°C min⁻¹. The quantity of WO_3 powder spread on SiO₂/Si substrate significantly affect the nucleation and layer numbers of triangular-shaped WS_2 crystals. Pyramid-like few-layers stacked structure of WS_2 crystals are obtained from densely spread WO_3 procursor and rate of sulfurization at 750°C.

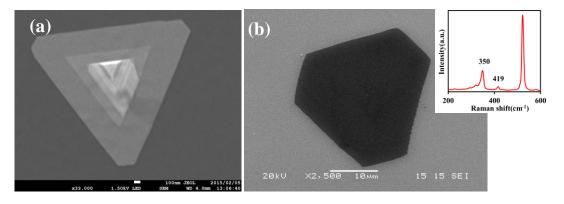


Fig. 1 FE-SEM image of pyramid like triangular crystal structure (b) SEM image of single triangular WS_2 crystal (inset of the figure shows Raman spectra of the WS_2 crystal)

Reference

- [1] S. M. Shinde, G. Kalita, M. Tanemura et al. J. Appl. Phys. 116, 214306, (2014).
- [2] A. Thangaraja, G. Kalita, M. Tanemura et al. Mater. Letts. 156, 156–160, (2015).