Electrical properties of 100-oriented (*1-x*)BiFeO₃-*x*(Bi_{0.5},K_{0.5})TiO₃ thin films on LaNiO₃ electrode Graduate School of Eng., Osaka Pref. Univ.¹, [°]Jin Hong Choi¹, Takeshi Yoshimura¹,

and Norifumi Fujimura¹

E-mail: tyoshi@pe.osakafu-u.ac.jp

[Introduction]

BiFeO₃-(Bi_{0.5},K_{0.5})TiO₃ (BF-BKT) system is one of the candidate of lead-free piezoelectric ceramics because it is reported that BF-BKT ceramics have large piezoelectric constant (d_{33} =370pm/V).¹⁾ This result is encouraging for the improvement of piezoelectric constant of Bi-base perovskite ferroelectric thin films.²⁾ In this study, we investigate the phase development for crystallization process and electrical properties of BF-BKT thin films grown on (100) oriented LaNiO₃/Si.

[Experimental Procedure and results]

0.6BF-0.4BKT films were deposited by rf-sputtering method. 0.6BF-0.4BKT ceramic disk with 10% excess Bi prepared by conventional ceramic process was used as a target. The films were grown on (100) LaNiO₃ (LNO)/Si substrates under the process pressure of 1 Pa with an Ar:O₂ ratio of 4:1. The thickness of the films was fixed as ~240 nm. Figure 1 show the XRD profiles of 0.6BF-0.4BKT thin films deposited at the substrate temperature between 475 °C and 575 °C. While all the films crystallized in perovskite phase, the integrated diffraction intensities of 200 peaks of the films are highest at 505 °C and the lattice constant decreases with increasing growth temperature. It was also found that the films deposited at higher temperature have the deficiencies of Bi^{3+} and K^{+} . The polarization-voltage (*P-V*) hysteresis loop of the films was measured at room-temperature. Although the films deposited above 540 °C do not show the

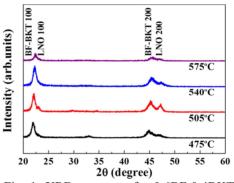


Fig. 1. XRD patterns of a 0.6BF-0.4BKT thin film fabricated on (100) LNO/Si

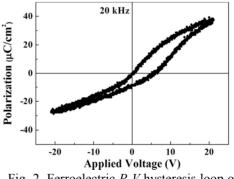


Fig. 2. Ferroelectric P-V hysteresis loop of the BF-BKT thin film deposited at 505 °C

hysteresis behavior, the ferroelectricity is observed for the films deposited at below 505 °C as shown in Fig. 2. It appears this is also caused by the evaporation of Bi^{3+} and K^+ at higher deposition temperature. In the presentation, the piezoelectric properties of the films are also discussed.

[Reference]

- 1) M. I. Morozov et al., Appl. Phys. Lett. 101, 252904 (2012).
- 2) C. –J. Cheng et al., Appl. Phys. Lett. 97, 212905 (2010).