Fabrication of Highly {110}-oriented Ba(Ce,Y)O₃ Perovskite Thin Films by RF-magnetron Sputtering Method

NIT, Tsuruoka College¹, Tokyo Inst. of Tech.²

Tomoya Sato¹, Daichi Ichinose², Hiroshi Funakubo², and [°]Kiyoshi Uchiyama¹ E-mail: uchiyama@tsuruoka-nct.ac.jp

10mol% Y-doped BaCeO₃ (BCYO) perovskite thin films were directly deposited on (111)Pt/TiO₂/SiO₂/Si (abbreviated as Pt/Si) substrates by an RF-magnetron sputtering method. The deposition conditions including deposition temperature, sputtering pressures, and kinds of sputtering gas

were examined to obtain well-crystallized BCYO thin films. The deposited films were characterized by the powder X-ray diffraction (XRD) with CuK α radiation and the field emission scanning electron microscopy (FE-SEM). The wide-range reciprocal space mapping of θ -2 θ and ψ -2 θ scans were also employed to investigate their preference of crystallographic orientations.

Figure 1 shows a wide-range reciprocal mapping image and its integration of the BCYO thin films. The strong spots of {110} BCYO were observed at 20=28.7°, ψ =0, 60° and (200) BCYO at 20=41.1°, ψ =45°, which means highly {110} -oriented BCYO films with pseudo-cubic structure can be deposited directly on the Pt/Si substrates. Though we have already reported the preferred orientation control in <110> direction of perovskites on Pt/Si substrates by using a (101)PdO//(111)Pd buffer [1], this results suggests we have successfully deposited {110}-orientated perovskite thin films without using any buffer layers. We consider this BCYO thin film can be used as a seed layer to obtain {110}-oriented perovskites.

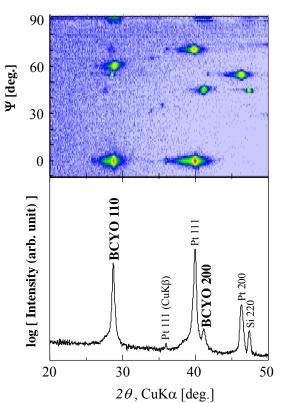


Fig.1 A wide-range reciprocal mapping image and its integration as θ -2 θ scan of the BCYO thin films. The crystal plain indexes in this fig. are denoted assuming pseudo-cubic structure.

Acknowledgements: We would like to thank to JSPS KAKENHI Grant Number 26420284, JST A-STEP, Canon Foundation and RIEC, Tohoku Univ. for their financial supports.

[1]N. Oshima et al., presented at FMA32, May 2015, Kyoto, and submitted to JJAP(2015).