N₂-H₂混合気体放電プラズマ中 NH 分子振動と回転温度の影響 Vibrational and Rotational Temperature Dependence of NH in Microwave N₂-H₂ Mixture Gas Discharge

^O譚浩¹、根津篤¹、赤塚洋¹(1.東京工業大学)

[°]Hao Tan¹, Atsushi Nezu¹, Hiroshi Akatsuka¹ (1.Tokyo Institute of Technology)

E-mail: tanhao1963@gmail.com

The N_2 - H_2 mixture discharge has been investigated since over 50 years ago. Recently it become hot topics again because its widely usage in nitric processes and some industrial applications. Since low-temperature and low-pressure plasma can provide peak-resoluble spectrum, it is a very helpful method to diagnose plasmas and to investigate molecular properties. In this research, we obtained the spectra of N_2 - H_2 mixture discharges both theoretically and experimentally.

In N₂-H₂ mixture discharge, N2 2nd positive system (2PS) and NH 336-nm system can be observed. The N₂ 2PS ranges from 300-400 nm and NH 336-nm system ranges around 336 nm, which originates from the electric transitions from N2 C ${}^{3}\Pi$ to B ${}^{3}\Pi$ and NH A ${}^{3}\Pi$ to X ${}^{3}\Sigma^{-}$ molecular states.

Figure 1 shows the band spectra of N_2 -H₂ mixture discharge. By fitting the spectra with the theoretical calculations, the vibrational and rotational temperature can be obtained. And after some analysis, we supposed two reactions that generats the NHA³ Π excited state as followings,

$$NH_3 + hv \to NH(A^3\Pi) + H_2, \tag{1}$$

$$NH(a, b) \to NH(A^3\Pi) + energy, \tag{2}$$

More detail explanations will be presented in the conference.

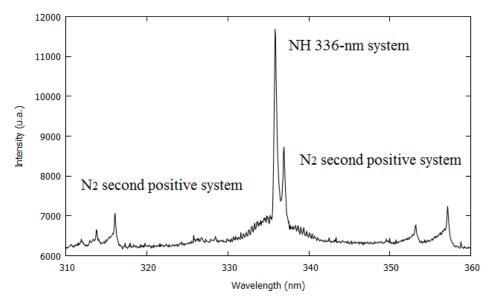


Fig. 1. Experimentally observed spectra over the 310-360-nm wavelength range with H₂ partial pressure at 90%. The 2^{nd} positive system of N₂(310~320 nm and 350~360 nm) and 336-nm system (330~340 nm) of NH are specified. The discharge pressure is 1 Torr.