スピン軌道トルク磁化反転のパルス幅依存性
 Pulse width dependence of a spin－orbit torque induced magnetization switching
 O姉川 哲朗 ${ }^{1}$ ，張 超亮 ${ }^{1}$ ，深見俊輔 ${ }^{2,3}$ ，大野英男 ${ }^{1,2,3,4}$
 （1．東北大通研附属 $\dagger /$ • ピ ン 実験施設，2．東北大 CSIS，3．東北大 CIES，4．東北大 WPI－AIMR）
 ${ }^{\circ}$ T．Anekawa ${ }^{1}$ ，C．Zhang ${ }^{1}$ ，S．Fukami ${ }^{2}{ }^{2,3}$ ，and H．Ohno ${ }^{1,2,3,4}$（1．LNS，RIEC Tohoku Univ．， 2．CSIS，Tohoku Univ．，3．CIES，Tohoku Univ．，4．WPI－AIMR，Tohoku Univ．）
 E－mail：anekawa4＠riec．tohoku．ac．jp

Recently，three－terminal spintronics devices that utilize torque originating from the spin－orbit interaction（spin－orbit torque：SOT）have attracted great attention．In addition to the two conventional structures，which have the easy axis perpendicular to the film plane（type Z ）or in－plane and orthogonal to the long axis of channel（type Y ），we proposed in the last meeting a new structure with the easy axis being parallel to the channel（Type X ）and demonstrated the basic operation using dc current［1］．Here，we study， using the type X and type Y ，the current pulse width τ_{p} dependence of the SOT switching from dc to sub－ns region．Note that τ_{p} dependence of SOT switching has been highly controversial；a theory predicted that the threshold current is less sensitive to τ_{p} for type Z（and type X ）than type Y［2］，whereas an experimental study showed that the results of type Z was well described by a conventional spin－transfer torque switching model that holds true for type Y［3］．

The film with a stack of $\mathrm{Ta} / \mathrm{CoFeB} / \mathrm{MgO} / \mathrm{CoFeB} / \mathrm{Co} / \mathrm{Ru} / \mathrm{Co}$ is deposited on Si wafer by dc／rf magnetron sputtering．The deposited film is processed into three－terminal SOT devices with an elliptic magnetic tunnel junction on a Ta channel by electron beam lithography and Ar ion milling．Type－X and type－Y devices are fabricated on the same wafer．Current pulses with various τ_{p} are supplied from a pulse generator．The threshold voltage V_{th} for switching（average of 10 －times measurement）is plotted as a function of τ_{p} for both types X and Y in Fig．1．$V_{\text {th }}$ of type Y steeply increases as τ_{p} decreases below 100 ns ．In case of $\tau_{\mathrm{p}}=2$ ns，switching is observed only three times in 10 －times trials，where voltage pulses up to 2.6 V are applied． In contrast，$V_{\text {th }}$ of type X gradually increases with decreasing τ_{p} ．We observe 50 －times switching for 50 －times trials even in $\tau_{\mathrm{p}}<500 \mathrm{ps}$（not shown）．These results suggest that type－X structure is promising for high－speed applications．

This work was supported by ImPACT Program of CSTI，R\＆D Pj for ICT Key Technology of MEXT， R\＆D Subsidiary Program of METI，and JSPS KAKENHI Grant No．15K13964 and 15J04691．
［1］T．Anekawa et al．，JSAP Spring Meeting，11p－P1－44 （2015）．
［2］K．－S．Lee et al．，APL．104， 072413 （2014）．
［3］K．Garello et al．，APL．105， 212402 （2014）．

Fig．1：Pulse width τ_{p} dependence of threshold voltage V_{th} for type－X and $-Y$ devices．At $\tau_{\mathrm{p}}=2 \mathrm{~ns}$ ， $V_{\text {th }}$ is more than 2.6 V ．

