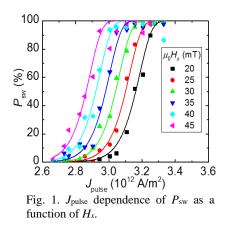
Magnetization reversal induced by spin-orbit torque in a nanoscale Ta/CoFeB/MgO dot


Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ.¹, CSIS, Tohoku Univ.², CIES, Tohoku Univ.³, WPI-AIMR, Tohoku Univ.⁴

°C. Zhang¹, S. Fukami^{2,3}, H. Sato^{2,3}, F. Matsukura^{1,2,4}, and H. Ohno^{1,2,3,4}

E-mail: zhang@riec.tohoku.ac.jp

Spin-orbit torque (SOT) induced magnetization reversal attracts increasing attention these years, because it offers a new magnetization switching scheme for spintronics devices [1]. For the development of SOT-spintronics devices, it is of particular importance to reveal factors in determining the threshold current density (J_{th}). According to our previous work [2], J_{th} in devices with the size down to 30 nm, to which a single-domain picture is expected to be applicable, is about 3-4 times smaller than that calculated from a macrospin model [3], suggesting some factors reducing J_{th} are missing. One possible missing factor is the field-like component τ_{FL} of SOT, which is not considered in the model studied so far. Here, we investigate the switching probability of a 40-nm Ta/CoFeB/MgO dot fabricated on a Hall-bar, and compare the result with the macrospin model including τ_{FL} .

Figure 1 shows the switching probability P_{sw} as a function of the pulse current density J_{pulse} under different external magnetic fields H_x applied along the current direction. From the fitting with a macrospin model without $\tau_{FL},$ the spin Hall angle θ_{SH} and the effective anisotropy field $\mu_0 H_{\kappa}^{\text{eff}}$ are determined to be 0.21 and 0.5 T, respectively. These values are deviated from $\theta_{\rm SH} = 0.03$ and $\mu_0 H_K^{\text{eff}} = 0.23 \text{ T}$ determined from other methods [4]. We simulate SOT switching by a macrospin model with the Landau–Lifshitz–Gilbert equation including τ_{FL} , and compare the

simulated results with the experimental ones. We find that the model without τ_{FL} overestimates both $\mu_0 H_K^{\text{eff}}$ and θ_{SH} , and the degree of discrepancy depends on the magnitude of effective damping constant α_{eff} . Assuming $\alpha_{\text{eff}} \approx 0.15$, the experimentally obtained J_{th} can be well reproduced by the simulation with $\theta_{SH} = 0.03$ and $\mu_0 H_K^{\text{eff}} = 0.23$ T, implying that τ_{FL} is one of the decisive factors for J_{th} .

This work was supported by R&D project for ICT Key Technology of MEXT, R&D Subsidiary Program of METI, ImPACT Program of CSTI, JSPS KAKENHI Grant No. 15J04691, and IIARE of Tohoku Univ.

[1] L. Q. Liu *et al.*, Science **336**, 555 (2012).
[2] C. Zhang *et al.*, JSAP Spring 2015, E12P-D11-5.
[3] K.-S. Lee *et al.*, APL **104**, 072413 (2014).
[4] C. Zhang *et al.*, APL. **103**, 262407 (2013).