Study on minority-carrier lifetime mapping of BaSi$_2$ formed on multicrystalline Si substrates

© Y. Li1, M. BaBa1, Trinh Cham Thi2, K. Toko1, T. Sekiguchi3, N. Usami2,4, T. Suemasu1,4

(1Univ. Tsukuba, 2Nagoya Univ., 3NIMS, 4JST-CREST)

E-mail: bk201113023@s.bk.tsukuba.ac.jp

Introduction
Barium disilicide (BaSi$_2$) has been attracting attention as a new candidate material for thin-film solar cell for the following reasons. First and most important, both a long minority-carrier lifetime (~10 μs) and a diffusion length (~10 μm) can be utilized. In addition, the absorption coefficient of BaSi$_2$ (α=3×104 cm$^{-1}$ at 1.5 eV) is about 30 times larger than that of crystalline Si. Moreover, the band gap of BaSi$_2$ is 1.3 eV, which matches the solar spectrum [1-3]. Recently, we have formed BaSi$_2$ on inexpensive substrates, such as multicrystalline Si (mc-Si) and glass. It is thus significant to investigate the properties of non-epitaxial BaSi$_2$ films formed on these substrates. Grain boundaries (GBs) of BaSi$_2$ were thought to influence the recombination activities of minority-carriers (holes). However, according to our previous investigations by Kelvin probe force microscopy (KFM), GBs in non-epitaxial BaSi$_2$ films formed on mc-Si are not considered to be recombination centers. But the minority-carrier lifetime of BaSi$_2$/mc-Si is still not clear. In this work, we measured the minority-carrier lifetime mappings of BaSi$_2$ formed on a mc-Si substrate.

Experiment
We used a mc-Si wafer with small and randomly oriented grains for the growth of BaSi$_2$. A 500 nm thick undoped n-BaSi$_2$ (n ~ 1016 cm$^{-3}$) capped with 8 nm α-Si was grown on 1×1 cm2 mc-Si by MBE method. The crystal orientation of BaSi$_2$ was investigated by X-ray diffraction (XRD). The minority-carrier lifetime mapping was measured by microwave-detected photoconductivity decay (μ-PCD) method. Electron-hole pairs were generated by a 5 ns laser pulse with a wavelength of 349 nm and photoconductivity decay was measured by the reflectivity of microwave with the frequency of 26 GHz.

Results &Discussions
Figure 1 presents the θ-2θ XRD pattern of the sample. We see that non-epitaxial parts such as BaSi$_2$ (301) and BaSi$_2$ (411) exist in the BaSi$_2$/mc-Si, which is due to the different crystal orientation of the Si grains in the mc-Si. On the other hand, the lifetime of BaSi$_2$/mc-Si ranged from 0 to 20 μs. This result indicates that diverse orientation of BaSi$_2$ may cause the variation of minority-carrier lifetime. Figure 2 presents the AFM topographic image for the sample. The RMS value representing roughness of the sample surface is 13, which is larger than α-Si capping layer. Therefore we thought that the effectivity of surface passivation might be another factor that influenced the minority-carrier lifetime.

References