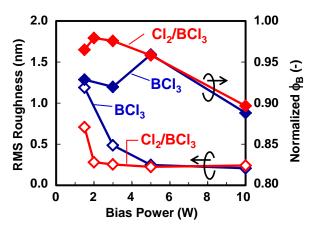
リセスゲート AlGaN/GaN-HEMT 向け低ダメージドライエッチング

Low Damage Dry Etching for Recessed Gate AlGaN/GaN-HEMTs O美濃浦 優一、岡本 直哉、多木 俊裕、尾崎 史朗、牧山 剛三、鎌田 陽一、渡部 慶二 (株式会社富士通研究所)

°Yuichi Minoura, Naoya Okamoto, Toshihiro Ohki, Shiro Ozaki, Kozo Makiyama, Yoichi Kamada, Keiji Watanabe (Fujitsu Laboratories Ltd.)


E-mail: minoura.yuichi@jp.fujitsu.com

<u>諸言</u> リセスゲート AlGaN/GaN-HEMT は、低いオン抵抗(R_{ON})と高い相互コンダクタンス(g_m) を両立させるために有望な構造である^[1]。しかしながら、ウエットエッチングが難しい GaN においては、リセスゲート構造の実現にドライエッチングが必要となる。そのため、デバイスの特性 劣化を抑制する低ダメージの GaN ドライエッチング技術の開発が課題である。

本研究では、エッチング面に形成したショットキーバリアダイオードの特性からエッチングダメージを評価し、低ダメージエッチングの開発を行った^[2]。

実験 Si ドーピング濃度 2×10^{17} cm⁻³ の n-GaN を ICP エッチング装置で 100 nm エッチングし、 ダメージ評価を行った。エッチング条件は、BCl₃ または Cl₂/BCl₃ の雰囲気下でバイアスパワーを 1.5-20 W とした。また、エッチング面を原子間力顕微鏡で観察し、さらにエッチング面に Ni/Au からなる直径 400 μ m の円形ショットキー電極を形成して容量-電圧 (C-V) 測定を行った。

結果 n-GaN エッチング表面ラフネスおよびショットキーバリア高さ(ϕ_B)のバイアスパワー依存性を図1に示す。なお、 ϕ_B は C-V 特性から算出し、エッチング未実施試料の ϕ_B を1として規格化した。結果として、 BCl_3 条件では3W以下の低いバイアスパワーで表面ラフネスが増大し、それに伴って ϕ_B が低下することがわかった。それに対して Cl_2/BCl_3 条件では極めて低いバイアスパワー(2W)においても平滑なエッチング面を実現し、 ϕ_B 低下を抑制することを可能とした。さらに、 Cl_2/BCl_3 の低パワー条件を AlGaN/GaN-HEMT のリセスゲート形成に適用した結果(図 2)、従来構造よりもドレイン電流および g_m が増加し、低ダメージエッチングの効果が実証された。

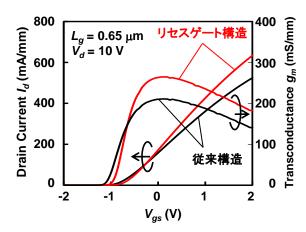


図 1 GaN エッチング表面ラフネスおよび ϕ_B のバイアスパワー依存性

図 2 作製した AlGaN/GaN-HEMT の DC 特性

参考文献

- [1] D. Buttari et al., IEEE Electron Device Lett., 23, p.118 (2002)
- [2] Y. Minoura et al., CS MANTECH Technical Digest, p.129, May. 2015.