酸素ガス流量と放電電流を制御因子とした 反応性プラズマ蒸着 Ga 添加 ZnO 膜のキャリア輸送制御

Carrier transport of polycrystalline Ga-doped ZnO films prepared by reactive plasma

deposition with dc arc discharge: oxygen gas flow rate and discharge current

1) 高知工科大総研、2) 高知工科大システム工、3) 住友重機械工業株式会社

^O野本淳一¹⁾、牧野久雄^{1,2)}、北見尚久³⁾、酒見俊之³⁾、山本哲也¹⁾

1) Research Inst., Kochi Univ. Tech., 2) Kochi Univ. Tech., 3) Sumitomo Heavy Ind, Ltd.,

°J. Nomoto ¹⁾, H. Makino ^{1,2)}, H. Kitami ³⁾, T. Sakemi ³⁾, T. Yamamoto ¹⁾,

E-mail: nomoto.junichi@kochi-tech.ac.jp

【はじめに】これまで、大面積基板上に高速成膜可能な反応性プラズマ蒸着法 (RPD) を用いて成 膜された多結晶 Ga 添加 ZnO (GZO) 膜においては、構造・電気・光学特性と、成膜時に導入す る酸素ガス (O₂) 流量 (OFR) との関係を検討してきた。本研究では、OFR 以外に膜特性を決定 付ける制御因子として、プラズマガンへの印加放電電流 (I_D) に着目した。GZO 膜において、さ らなる電気抵抗率の低減を目指すべく、キャリア輸送機構を、OFR と I_D との 2 つの制御因子 の観点から検討したその成果を報告する。

【実験方法】GZO 膜 (膜厚は 200 nm、ガラス基板 (Corning, EAGLE XG) 温度は 200 ℃、成膜 原料は ZnO (4N) に Ga₂O₃ (4.0 wt.%, 3N) を混合した焼結体: SKY-Z (ハクスイテック社製)) は RPD (住友重機械製) により成膜した。電気特性は、Hall 効果測定 (nanometrics 社製、) により、 室温で評価した。堆積時には、OFR を 0 - 25 sccm の変化幅で、成長中に成膜室内へ導入した。 プラズマガンと成膜原料との間に印加する I_D の変化幅は 80 - 140 A とした。

【結果と考察】本研究で得られた最小電気抵抗率は、 $1.96 \times 10^4 \Omega cm$ (キャリア密度 (N) =1.25× $10^{21} cm^{-3}$ 、ホール移動度 (μ_H) = 25.4 cm²/Vs)である。Fig. 1 は (a) N、及び (b) μ_H において、各 OFR における I_D 依存性を示す。Fig. 1 (a) が示す通り、N の主制御因子は OFR であり、OFR の増加 に伴い減少した。N の最大値として、 $1.25 \times 10^{21} cm^{-3}$ (OFR=10sccm、I_D=120A) が得られた。一方、 μ_H (Fig. 1(b)) は、OFR 及び I_D の両方に依存した。キャリアへの散乱機構は、イオン化不 純物散乱 (Fig. 1 (a)) と、粒界散乱 (後述) との両方からの影響が関わる。

Fig. 1(c) は、結晶子内のキャリア移動度である光学移 動度 (μ_{opt}) において、各 OFR における I_D 依存性を 示す。 μ_{opt} は、OFR と I_D の両方に依存した。その 大きさは、OFR の増大、I_D の減少に伴い、単調に増 大した。 $1/\mu_{\rm H}=1/\mu_{opt}+1/\mu_{\rm GB}$ ($\mu_{\rm GB}$:粒界でのキャリア移動 度) から導かれる粒界散乱の寄与 ($\mu_{opt}/\mu_{\rm GB}$)¹ から、 OFR=0~10 sccm で得られた GZO 膜では粒界散乱 の寄与はほとんどない。一方、OFR=15 sccm 以上で は $\mu_{opt}/\mu_{\rm GB}$ の増大が著しく、粒界散乱の影響が大きく、 $\mu_{\rm H}$ の減少 ($\mu_{\rm H}<\mu_{opt}$) となる (Fig. 1(b)、(c))。

上述した膜特性を決める第一因子の解明とそれに基 づいた制御を行うため、質量・エネルギアナライザや ラングミュアプローブ等を用いて得られた成膜粒子 のイオン化率、エネルギー等を基に議論する。

【謝辞】双葉電子記念財団(平成 26 年度自然科学研 究助成)による支援を受けた。一部、日本学術振興会 科研費 若手研究 (B)(研究費番号 26790050)による 支援を受けている。

1) J. Nomoto et al., J. Appl. Phys. 117, 045304 (2015).

