Two-Photon Photochemistry による自己組織化光導波路の位置ずれトレランス拡大 Widening misalignment tolerance in self-organized waveguides by two-photon photochemistry

東京工科大学 ¹,日産化学工業 ² 。吉村徹三 ¹,竹田大祐 ¹,衣笠慶彦 ¹,佐藤拓也 ¹,縄田秀行 ²

Tokyo Univ. of Technology¹, Nissan Chemical Industries, LTD.² T. Yoshimura¹, D. Takeda¹, Y. Kinugasa¹, T. Sato¹, H. Nawata² E-mail : tetsu@cs.teu.cc.jp

1. はじめに

FDTD 法によるシミュレーションにより,自己組織化光 導波路 (SOLNET) がナノスケールデバイスのセルフアラ イン光結合に適用可能なことが示されが,位置ずれトレラ ンスは 600 nm 程度とまだ不十分である.¹⁾ 今回, two-photon photochemistry を用いた SOLNET ^{2,3)} につ いて,トレランス拡大の可能性を検討した.

2. Two-Photon SOLNET

図 1(a)に示すように、two-photon photochemistry では、波 長 λ_1 の光と波長 λ_2 の光で電子が2段階励起されて化学反応 が起こる. 4) これを利用して、図 1(b)に示すように、 λ_1 お よび λ_2 を2つの光デバイスから two-photon photochemistry 特性を備えた photo-induced refractive-index increase (PRI)材 料に導入することにより Two-Photon SOLNET を形成でき る. この方式では、 $\lambda_1 \ge \lambda_2$ が共存する領域でのみ屈折率上 昇が起こるため、従来の One-Photon SOLNET に比べて高 コントラストの屈折率分布が期待できる.

図 1 (a)Two-photon photochemistry と(b)Two-Photon SOLNET

3. FDTD 法による SOLNET 形成シミュレーション

コア幅 600 nm, 屈折率 2.0 の光導波路間の SOLNET 形成 を FDTD 法でシミュレートした (図 2). 左側のコラムは屈 折率の 2 乗 n², 右側のコラムはプローブ光 (650 nm)の右 方向への伝搬の様子である. クラッディング領域の屈折率 は 1.5, PRI 材料の屈折率は書き込み光照射により 1.5 から 1.7 まで上昇, λ_1 は 400 nm, λ_2 は 780 nm とした.

図 2(a)に示すように、One-Photon SOLNET では、位置ず れ *d*=600 nm の場合は SOLNET が形成されるが、ずれが 3000 nm まで増加すると SOLNET が形成されなくなる. 一 方、Two-Photon SOLNET では、位置ずれ 3000 nm でも SOLNET が形成され、プローブ光がガイドされている. こ れから、Two-Photon SOLNET では、位置ずれトレランスが、 One-Photon SOLNET に比べて5倍拡大することがわかった.

図 3 に示すように, SOLNET の屈折率は, 初期段階では GI型,書き込み時間とともに SI型になる.また, Two-Photon SOLNET では, SOLNET の broadening が抑制される.

図 2 FDTD 法による SOLNET 形成シミュレーション

図 3 SOLNET 断面の n²プロファイル

4. Two-Photon SOLNET 形成実験

Biacetyl-doped 有機/無機ハイブリッド感光性材料 (SUNCONNECT[®], 日産化学) ⁵⁾を PRI 材料として, 2 本のマルチモード光ファイバからそれぞれ λ₁ (448 nm), λ₂ (780 nm) を入射させた結果, Two-Photon SOLNET が形成 された (図 4).

図 4 Two-Photon SOLNET の形成実験

References

- 1) T. Yoshimura, J. Lightw. Technol. 33, 849 (2015).
- 2) T. Yoshimura et al., Opt. Commun. (2015) (in Press).
- 3) T. Yoshimura et al., U.S. Patent 6,081,632 (2000).
- 4) C. Brauchle et al., Opt. Lett. 7, 177 (1982).

5) H. Nawata, IEEE CPMT Symposium Japan, 121 (2013).