Control of hole density in acceptor co-doped Si:Ce films

[°]Yusuke Miyata, Kazuya Ueno, Takeshi Yoshimura, Atsushi Ashida and Norifumi Fujimura,

(Grauate School of Eng., Osaka Pref. Univ.)

E-mail: fujim@pe.osakafu-u.ac.jp

[Introduction]

We have been interested in the effect of Ce doping on magneto-transport characteristics in single crystalline Si films because *p*-type Si:Ce films show ferromagnetic behavior. Although low temperature molecular beam epitaxy system enable to control surface segregation of Ce, all samples show *n*-type conduction due to high donor density caused by low growth temperature. In the case of acceptor co-doping, it is difficult to obtain shallow *p*-type conduction because of high donor density of Si:Ce films. Only degenerated *p*-type conduction by heavy acceptor doing is obtained. In order to evaluate Ce³⁺ ion, which has a *4f* spin, related transport characteristics, control of fermi energy near the valence band is necessary. Thus, it is essential to decrease donor density in Si:Ce films. In this paper, we report the decrease of donor density by change of growth temperature or rate in order to control of hole concentration in B co-doped Si:Ce films.

[Experiments and results]

Si:Ce films were fabricated on (001) silicon on insulator substrate by solid source MBE system. Growth rate, Ce concentration and B concentration were controlled by k-cell temperature. In-situ and ex-situ surface structure and morphology were observed by RHEED or AFM, respectively. Four terminal Al electrodes were deposited by vacuum evaporation for evaluation of transport characteristics.

Fig. 1 shows change in the growth rate and Ce concentration as a function of k-cell temperature of Si or Ce. The experimental result of growth rate and Ce concentration (\bullet) are fitted with the exponential function (broken line) suggesting that these two parameters can be controlled independently. By using these results, Si:Ce films with identical Ce concentration (0.5 at.%) were able to be fabricated by using different growth rate. Fig. 2 shows carrier density and mobility of these samples. Carrier densities of all samples are much lower than that of Si homoepitaxial thin film (10^{18} cm⁻³). However, clear change of carrier density and mobility by control of growth rate is not recognized by changing the growth rate. We will discuss the control of donor density in Si:Ce films and the correlation between hole density and magneto-transport characteristics in B co-doped Si:Ce films including the Si:Ce films with higher Ce concentration.

[References]

¹T. Yokota *et. al.*, J. Appl. Phys., **93**(2003)219. ²Y. Miyata *et. al.*, Journal of Smart Processing, **2**(2013)219.

Fig. 1 Fitting (broken line) and experimental (\bullet) growth rates (a) and Ce concentrations (b) as a function of k-cell temperature.

Fig. 2 Carrier density (black) and electron mobility (red) as a function of growth rate.