Transient Analysis of Oblique Hanle Signals Observed in GaAs

${ }^{\circ}$ Zhichao Lin，Masafumi Yamamoto，Tetsuya Uemura
Graduate School of Information Science and Technology，Hokkaido Univ．
E－mail：lin－zhichao＠nsed．ist．hokudai．ac．jp

1．Background

The understanding of nuclear－spin dynamics in semiconductors is a major prerequisite for creating viable spintronic devices，such as a nuclear－spin based qubit．Recently，we demonstrated dynamic nuclear polarization（DNP）in all－electrical spin injection devices with $\mathrm{Co}_{2} \mathrm{MnSi} /$ ultrathin $\mathrm{CoFe} / \mathrm{n}$－GaAs Schottky tunnel junctions，and experimentally investigated the transient response of nuclear spins to a change in the magnetic field through transient oblique Hanle effect measurements［1］．However，its full understanding has not been established yet．In this study，we analyzed a transient response of nuclear spins in GaAs to a change in a magnetic field based on a time evolution of nuclear spin temperature．

2．Simulation Model

The average nuclear spin \mathbf{I}_{av} and resultant Overhauser field $\mathbf{B}_{\mathbf{n}}$ in the presence of external magnetic field \mathbf{B} are given by［2］

$$
\begin{align*}
& \mathbf{I}_{\mathrm{av}}=\frac{(I+1) \mu_{I}}{3 \Theta} \mathbf{B}, \tag{1}\\
& \mathbf{B}_{n}=b_{n} \mathbf{I}_{\mathrm{av}} / I, \tag{2}
\end{align*}
$$

where I is the value of nuclear spin，μ_{I} is the nuclear magnetic moment，Θ is the spin temperature in unit of energy，b_{n} is the effective field due to the polarization of nuclear spins，which takes the negative value of -17 T in GaAs for the theoretical ideal case．The time evolution of nuclear spin temperature under the DNP process is described by the following equation［2］

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{\Theta}\right)=-\frac{1}{T_{P}}\left(\frac{1}{\Theta}-\frac{1}{\Theta_{0}}\right), \tag{3}
\end{equation*}
$$

where T_{P} is the characteristic time for DNP and Θ_{0} is the steady－state nuclear spin temperature，which is given by

$$
\begin{equation*}
\frac{1}{\Theta_{0}}=f \frac{4 I}{\mu_{I}} \frac{\mathbf{S} \cdot \mathbf{B}}{\mathbf{B}^{2}+\xi \mathbf{B}_{\mathbf{L}}^{2}}, \tag{4}
\end{equation*}
$$

where $f(\leq 1)$ is the leakage factor， \mathbf{S} is the average electron spin $\left(|\mathbf{S}|=1 / 2\right.$ corresponds to $\left.P_{\text {GaAs }}=100 \%\right), \mathbf{B}_{\mathbf{L}}$ is the local dipolar field experienced by the nuclei，and ξ is a numerical coefficient which depends on the nature of the spin－spin interactions．

Since the electron spin precession is induced by $\mathbf{B}+$ \mathbf{B}_{n} ，the nonlocal voltage $V_{N L}$ between contact 3 and 4 （Fig．1）was approximately calculated by using the conventional spin diffusion model［3］．

3．Results and Discussion

Figure 2 shows（a）a typical oblique Hanle signal observed in GaAs with a $\mathrm{Co}_{2} \mathrm{MnSi}$ spin source and（b） its simulation result by using eqs．（1）－（4）．The details of the device structure and experimental conditions were described in Ref．［1］．The experimental result was well fitted with the simulation result，indicating the validity of the simulation model used in this study．Compared to the steady－state signal，the transient signal has two features：（1）an additional side peak was observed at $B_{o b}$ <0 for the negative sweep direction，and（2）no side peak was observed for the positive sweep direction， showing a clear hysteretic nature depending on the sweep direction．From the analysis，we found that these features can be understood by the delay of time response of Θ to a change in \mathbf{B} ．

Fig．1．Schematic of a four－terminal nonlocal device and circuit configuration for oblique Hanle effect measurement．

Fig．2．（a）Experimental result of oblique Hanle signal observed in GaAs with a $\mathrm{Co}_{2} \mathrm{MnSi}$ spin source．（b）Simulation result of the oblique Hanle signal．

References

［1］T．Akiho et al．，Phys．Rev．B 87， 235205 （2013）．
［2］Optical Orientation，edited by F．Meiyer and B．P．
Zakharchenya（North－Holland，New York，1984）．
［3］J．Fabian et al．，acta physica slovaca 57， 565 （2007）．

