Transient Analysis of Oblique Hanle Signals Observed in GaAs

[°]Zhichao Lin, Masafumi Yamamoto, Tetsuya Uemura

Graduate School of Information Science and Technology, Hokkaido Univ.

E-mail: lin-zhichao@nsed.ist.hokudai.ac.jp

1. Background

The understanding of nuclear-spin dynamics in semiconductors is a major prerequisite for creating viable spintronic devices, such as a nuclear-spin based qubit. Recently, we demonstrated dynamic nuclear polarization (DNP) in all-electrical spin injection devices with Co₂MnSi/ultrathin CoFe/n-GaAs Schottky tunnel junctions, and experimentally investigated the transient response of nuclear spins to a change in the magnetic field through transient oblique Hanle effect measurements [1]. However, its full understanding has not been established yet. In this study, we analyzed a transient response of nuclear spins in GaAs to a change in a magnetic field based on a time evolution of nuclear spin temperature.

2. Simulation Model

The average nuclear spin I_{av} and resultant Overhauser field B_n in the presence of external magnetic field **B** are given by [2]

$$\mathbf{I}_{av} = \frac{(I+1)\mu_I}{3\Theta} \mathbf{B},\tag{1}$$

$$\mathbf{B}_n = b_n \mathbf{I}_{\mathbf{av}} / I , \qquad (2)$$

where *I* is the value of nuclear spin, μ_I is the nuclear magnetic moment, Θ is the spin temperature in unit of energy, b_n is the effective field due to the polarization of nuclear spins, which takes the negative value of -17 T in GaAs for the theoretical ideal case. The time evolution of nuclear spin temperature under the DNP process is described by the following equation [2]

$$\frac{d}{dt}\left(\frac{1}{\Theta}\right) = -\frac{1}{T_{P}}\left(\frac{1}{\Theta} - \frac{1}{\Theta_{0}}\right),\tag{3}$$

where T_P is the characteristic time for DNP and Θ_0 is the steady-state nuclear spin temperature, which is given by

$$\frac{1}{\Theta_0} = f \frac{4I}{\mu_I} \frac{\mathbf{S} \cdot \mathbf{B}}{\mathbf{B}^2 + \boldsymbol{\zeta} \mathbf{B}_{\mathbf{L}}^2},\tag{4}$$

where $f (\leq 1)$ is the leakage factor, **S** is the average electron spin ($|\mathbf{S}| = 1/2$ corresponds to $P_{\text{GaAs}} = 100\%$), **B**_L is the local dipolar field experienced by the nuclei, and ξ is a numerical coefficient which depends on the nature of the spin-spin interactions.

Since the electron spin precession is induced by $\mathbf{B} + \mathbf{B}_{n}$, the nonlocal voltage V_{NL} between contact 3 and 4 (Fig. 1) was approximately calculated by using the conventional spin diffusion model [3].

3. Results and Discussion

Figure 2 shows (a) a typical oblique Hanle signal observed in GaAs with a Co₂MnSi spin source and (b) its simulation result by using eqs. (1)-(4). The details of the device structure and experimental conditions were described in Ref. [1]. The experimental result was well fitted with the simulation result, indicating the validity of the simulation model used in this study. Compared to the steady-state signal, the transient signal has two features: (1) an additional side peak was observed at B_{ob} < 0 for the negative sweep direction, and (2) no side peak was observed for the positive sweep direction, showing a clear hysteretic nature depending on the sweep direction. From the analysis, we found that these features can be understood by the delay of time response of Θ to a change in **B**.

Fig. 1. Schematic of a four-terminal nonlocal device and circuit configuration for oblique Hanle effect measurement.

Fig. 2. (a) Experimental result of oblique Hanle signal observed in GaAs with a Co_2MnSi spin source. (b) Simulation result of the oblique Hanle signal.

References

- [1] T. Akiho et al., Phys. Rev. B 87, 235205 (2013).
- [2] Optical Orientation, edited by F. Meiyer and B. P. Zakharchenya (North-Holland, New York, 1984).
- [3] J. Fabian et al., acta physica slovaca 57, 565 (2007).