HVPE 成長した Ga₂O₃ ショットキーバリアダイオードの デバイス特性温度依存性

Temperature-Dependent Device Characteristics of

HVPE-Grown Ga₂O₃ Schottky Barrier Diodes

⁰小西 敬太¹、佐々木 公平^{2,1}、後藤 健^{2,3}、野村 一城³、Quang Tu Thieu^{3,4}、富樫 理恵³、 村上 尚³、熊谷 義直³、Bo Monemar^{4,5}、纐纈 明伯³、倉又 朗人²、山腰 茂伸²、東脇 正高¹ (1. 情通機構、2. タムラ製作所、3. 東京農工大院工、4. 東京農工大 GIRO、5. Linköping Univ.)

[°]Keita Konishi¹, Kohei Sasaki^{2, 1}, Ken Goto², Kazushiro Nomura³, Quang Tu Thieu⁴, Rie Togashi³,

Hisashi Murakami³, Yoshinao Kumagai³, Bo Monemar^{4, 5}, Akinori Koukitu³, Akito Kuramata²,

Shigenobu Yamakoshi², Masataka Higashiwaki¹

(1. NICT, 2. Tamura Corp., 3. Tokyo Univ. of Agri. & Tech., 4. TUAT GIRO, 5. Linköping Univ.) E-mail: keitakonishi@nict.go.jp

酸化ガリウム(Ga₂O₃)はバンドギャップが約 4.8 eV の単結晶酸化物半導体であり、GaN や SiC よ りも広いバンドギャップを有しているため、次世代パワー半導体新材料として注目されている。 今回、ハライド気相成長法 (HVPE) [1,2] により単結晶 n⁺-Ga₂O₃ (001) 基板上に Si ドープ n-Ga₂O₃ ドリフト層(キャリア密度~1×10¹⁶ cm⁻³)を成膜したエピ基板を用いて、Pt/Ti/Au をアノード電極とす る縦型ショットキーバリアダイオード構造を試作し、そのデバイス特性の温度依存性を評価した ので報告する。

図 1(a), (b)に、それぞれ電流密度-電圧 (*J-V*) 順方向、逆方向デバイス特性の温度依存性を示す。 測定温度は 21°C から 200°C まで 25°C 刻みとした。特性オン抵抗は、4.3~7.9 mΩ·cm²の間で温度 に比例して上昇した。また、-200 V における逆方向リーク電流密度は、1.5×10°A/cm²から 1.9×10⁴ A/cm² まで約 5 桁増加した。図 2 に、縦軸 $\ln(J_s/T^2)$ 、横軸 1000/T としたリチャードソンプロットを 示す。T は絶対温度、J_sはセミログプロットした順方向 *J-V* 特性のサブスレッショルド領域のフィ ッティングから見積もった飽和電流密度である。線形フィッティングの傾きからショットキー障 壁値 $q\phi_B$ を、縦切片から実効リチャードソン係数 A*を求めた結果、 $q\phi_B$ =1.15 eV, A*=56.1 A/cm²·K² という値を得た。 $q\phi_B$ は、容量-電圧特性から見積もった値とほぼ同じであった。また、A*は第一 原理計算から導出された Ga₂O₃ 中の電子有効質量から算出した値とオーダー的に一致している。

本研究の一部は、総合科学技術・イノベーション会議の SIP(戦略的イノベーション創造プロ グラム)「次世代パワーエレクトロニクス」(管理法人:NEDO)によって実施されました。 [1] K. Nomura *et al.*, JCG **405**, 19 (2014). [2] H. Murakami *et al.*, APEX **8**, 015503 (2015).

