複合ターゲットスパッタリングによる Mg0 単結晶基板を用いた Ni xMg_{1-x}0 系紫外線フォトコンダクタの作製と評価

Evaluation of NiMgO ultraviolet photoconductor on MgO substrate fabricated by radio-frequency sputtering using composite target 関西大学システム理工^O西谷拓樹、太田晃平、稲田貢、清水智弘、新宮原正三、齊藤

Æ

Kansai Univ.,°H.Nishitani, K.Ohta, M.Inada, T.Shimizu, S.Shingubara, and T.Saitoh

E-mail: saitoh@kansai-u.ac.jp

1. <u>はじめに</u>

近年、消防法の改正により、一般住宅に対して火災 報知機の設置が義務化された。従来の火災報知機は 煙や熱に反応するセンサを用いているが、激しく燃 えていなければ感知できないため早期発見には限界 があるといった問題がある。[1]そこで、ソーラーブ ラインド型光センサとして光電管が用いられてきた が、寿命が短い・動作電圧が高い、サイズが大きい・ 高価であるなどの問題があった。近年、これを解決す るために、フォトダイオードやフォトコンダクタ型 のソーラーブラインド深紫外線センサの研究が行わ れてきた。[2]

2. 実験方法

高周波スパッタリングにより、Ni_xMg_{1-x}O 薄膜を成 膜した。ターゲット材料には、Ni カソード(ϕ 80)と Mg チップ(ϕ 20)を用いた。Ni_xMg_{1-x}O 薄膜の形成の ため、カソード上に Mg チップを配置し、複合ターゲ ットスパッタリングによる成膜を行った。基板には、 石英基板及び MgO 単結晶基板を用いた。スパッタリ ングの条件は、Table1 に示す。

Table. 1.Sputtering conditions

ガス圧	Power	不活性ガス	反応性ガス	基板温度
0.005Torr	100W	Ar 4.5sccm	$O_2 0.5$ sccm	350°C

Ni_xMg_{1-x}O 薄膜を成膜した後、結晶性向上のために大 気中で 900°C 1 時間の熱処理を行った。次に、Ni_xMg_{1-x}O 薄膜に Au 電極を形成してフォトコンダクタを作 製した。電極構造は、櫛形交差電極で電極間隔は 50 μ m、大きさは 3×3mm² 櫛の本数は 60 本である。 金電極は、蒸着した後 400°C 15 分間のシンタリング 処理を行った。

3. <u>結果及び考察</u>

Figure1 熱処理後の Ni_xMg_{1-x}O 薄膜の薄膜表面 には、クラックが存在してい た。これは、石英基板と Ni_xMg_{1-x}O 薄膜の熱膨張率 の違いにより、熱応力が働い たためだと考えられる。ク ラックは、降温時に引張応 力が働き発生する。引張応 力が働く条件は、

Figure 1.SEM top view of the Ni_xMg_{1-x}O film on quartz substrate

α s(基板の熱膨張率)< α f(膜の熱膨張率)

の時である。ここで、石英基板、NixMg1·xO(\Rightarrow NiO とした)の熱膨張率はそれぞれ 5.5×10⁻⁷、1.4×10⁻⁵[/C]であることから、引張応力が働く条件に当ては まることが分かる。クラックをなくすため、NixMg1· xO と熱膨張率が近い MgO(1.1×10^{-5} [/C])を石英基 板とのバッファ層(40nm)として用いたデバイス及び MgO 単結晶基板として用いたデバイスを作製した。 結果、MgO 基板を用いた時のみクラックがなくなり、 MgO バッファ層では、熱応力を緩和することができ なかった。

次に、Fiugre2 に Ni_{0.8}Mg_{0.2}O 薄膜を用いたデバイ スの分光感度特性を示す。

Figure 2. Ni_{0.8}Mg_{0.2}O photoconductor spectral responsivity (x=0.8)

Figure2 より、石英基板/MgO バッファ層を用いたデバイスは、紫外域と可視光域の感度の比(UV/visible 比)が 5:1 であったのに対して、MgO 基板を用いたデバイスは 39:1 となった。これは、MgO 基板を用いることにより結晶欠陥が減少し、バンド内に存在する欠陥準位が減少したためだと考えられる。

4. <u>まとめ</u>

MgO 基板を用いることで、クラックのない Ni_xMg_{1-x}O 薄膜を作製することができた。また、UV/visible 比 を約8倍改善することができた。

<参考文献>

- [1]. 福屋哲生 電気学会論文誌(基礎・材料・共通部 門誌) Vol.129 (2009) No.8 520-524.
- [2]. 大橋直樹 バンドギャップエンジニアリングー 次世代高効率デバイスへの挑戦—(2011).