$BaHfO_3 添加 SmBa_2Cu_3O_y 薄膜の高温領域磁束相図とピニング特性$

Vortex phase and pinning property at high temperature range in BaHfO₃ doped SmBa₂Cu₃O_y films

 $^{\bigcirc}$ 土屋 雄司 1 、淡路 智 1 、渡邊 和雄 1 、三浦 峻 2 、一野 祐亮 2 、吉田 隆 2

(東北大学¹,名古屋大学²)

^OYuji Tsuchiya¹, Satoshi Awaji¹, Kazuo Watanabe¹, Shun Miura², Yusuke Ichino²,

Yutaka Yoshida² (Tohoku Univ.¹, Nagoya Univ.²)

E-mail:y.tsuchiya@imr.tohoku.ac.jp

1 はじめに

希土類酸化物超伝導 REBa2Cu3Ov(REBCO, RE:Y を含 む希土類元素)線材は、高い転移温度T。と、高磁場下で高 い臨界電流密度 J_cを持ち、電力機器への応用が期待され る。特に、液体窒素冷却による応用に向けて、高温領域に おける J_c 最適化が必要不可欠である。我々のグループで は、磁束に対する相関ピンとして SmBa₂Cu₃O_v(SmBCO) 薄膜に BaHfO₃(BHO) ナノロッドを導入することにより、 高温領域におけるピニング力 F_pの増強、J_c異方性の抑制、 不可逆磁場 Birr の向上を試みてきた [1]。これまで、この 系において Birr の Tc 付近での急激な減少が報告されてい るが、その原因は明らかとなっていない。よって、その原 因を解明することにより、高温領域における J_cを最適化 した試料の組成や構造のデザインが可能となる。本研究 では、ピニング特性を決める要因として磁束相図に着目 し、BHO 添加 SmBCO 薄膜における高温領域の磁束相図 とピニング特性の関係について輸送測定により調べた。

2 実験方法

低温成膜 (LTG) 法 [1] を用いて LAO 基板上に 350 nm 厚 の BHO 添加 SmBCO 薄膜を作製した。作製した試料を幅 100 μ m、長さ 1 mm のブリッジに加工し、四端子法によっ て J_c 及び電気抵抗率を測定した。 $J_c \ge B_{irr}$ の決定にはそ れぞれ電界基準 1 μ m/cm と臨界電流密度基準 10 A/cm² を 用いた。また、抵抗率の温度依存性から磁束ガラス液体 転移磁場 B_{glass} を決定した。

3 実験結果、考察

Fig.1 に、1.6vol% BHO 添加 SmBCO 薄膜における B//cに対する J_c の磁場依存性を示す。 J_c は磁場の増加に対し て、T < 87 K では 2 T から急激に減少し、一方、T > 88K ではなだらかに減少する、相関ピンを導入した系にお ける典型的なマッチング的振る舞いを示した。Fig.2 に同 試料における B_{irr} 、 B_{glass} 、 F_p が最大となる磁場 B_{peak} の温 度依存性を示す。それぞれの曲線は高温領域で非常に似た 振る舞いを示し、ピニング特性 (B_{peak} 、 B_{irr}) は、磁束相図 (B_{glass}) に強く影響を受けていることが明らかとなった。

4 謝辞

本研究は科学研究補助金 基盤 (S)23226014 の支援を受けて行いました。

参考文献

S. Miura *et al.*, Jpn. J. Appl. Phys., **53**, 090304 (2014).,
S. Miura *et al.*, J. Phys.: Conf. Ser., **507**, 022021 (2014).

Fig 2: Diagram of vortex phase and pinning properties.