(201), (010) Ga₂O₃ 上における結晶化 Al₂O₃ 層の面方位依存性

Surface Orientation Dependence of Crystalline Al₂O₃ Layer on (201) and (010) Ga₂O₃

⁰上村 崇史¹、ダイワシガマニ キルシナムルティ¹、倉又 朗人²、山腰 茂伸²、東脇 正高¹

(1. 情報通信研究機構、2. タムラ製作所)

^OTakafumi Kamimura¹, Daivasigamani Krishnamurthy¹, Akito Kuramata², Shigenobu Yamakoshi²,

Masataka Higashiwaki¹ (1. NICT, 2. Tamura Corp.)

E-mail: kamimura@nict.go.jp

我々は、バンドギャップが 4.8 eV 程度と、GaN, SiC よりも大きい酸化物半導体である Ga₂O₃を、 パワーデバイスへ応用するべく研究開発を推進している。前回、トランジスタにおけるゲート絶 縁膜候補として検討している Al₂O₃ と β-Ga₂O₃ のバンドアライメントについて報告した[1,2]。今 回、Ga₂O₃ の面方位に依存した Al₂O₃/Ga₂O₃ 界面構造と界面準位密度 (*D*_{it}) を評価したので報告す る。

図1に作製した試料の構造を示す。 ($\overline{2}$ 01) と (010) の2つの異なる面方位の β -Ga₂O₃ 基板を用 意し、下記の通り MOS キャパシタを作製した。($\overline{2}$ 01) 基板では BCl₃ RIE エッチング、(010) 基板 では高濃度 Si イオン注入ドーピング (Si=5×10¹⁹ cm⁻³、深さ 150 nm)・活性化アニールを、それぞ れ基板裏面全面に行い、その後 Ti/Au を蒸着してオーミックコンタクトを形成した。基板表面に は、プラズマ原子層堆積 (ALD) プロセスにより Al₂O₃(20 nm) を堆積し、最表面には直径 200 µm の円形 Au アノード電極を形成した。成膜時の基板温度は 250℃である。作製したダイオードにつ いて、構造評価として Al₂O₃/Ga₂O₃ 界面の断面透過型顕微鏡 (TEM) 観察を行うとともに、電気的 特性評価として容量—電圧測定を行った。

図 2 に、各面方位基板を用いて作製した試料の断面 TEM 像を示す。図 2(a)に示すように、($\bar{2}$ 01) 基板試料では、結晶構造を示す Ga₂O₃ 基板の上部に、ランダムなコントラストを示すアモルファ スの Al₂O₃ 層が観察された。一方 (010) 基板試料では、図 2(b) に見られるように、Ga₂O₃ 基板の 上部には厚さ 3.2±0.7 nm に渡り結晶化した Al₂O₃ 層が、続いてその上部にアモルファス Al₂O₃ 層 が形成されている。更に回折パターン解析により、形成された結晶化層は、 γ -Al₂O₃ (欠陥スピネ ル構造) であることがわかった。通常 ALD-Al₂O₃ 膜は、($\bar{2}$ 01) 基板試料のようにアモルファス構 造を示す。しかし、(010) 基板試料では両材料の化学的性質の類似性から、成膜温度 250℃という 低温においても (010) Ga₂O₃ の構造を引きずり、成膜初期で Al₂O₃ の結晶化が起こったと考えられ る。

図3に、Hi-Lo法により見積もった D_{it} を示す。図中のエネルギー範囲内で、($\overline{2}01$) 基板試料は 3.5×10¹¹ cm⁻³~1.5×10¹² cm⁻³の D_{it} を示した。これに対して、(010) 基板試料では D_{it} = 7×10¹⁰ cm⁻³ ³~6×10¹¹ cm⁻³と明らかに低い。この D_{it} の面方位依存性は、Al₂O₃/(010) Ga₂O₃ 界面付近に形成される結晶化Al₂O₃層により、 D_{it} が抑制されている可能性を示唆している。

本研究の一部は、総合科学技術・イノベーション会議の SIP(戦略的イノベーション創造プログ ラム)「次世代パワーエレクトロニクス」(管理法人:NEDO)によって実施されました。

[1] 上村他、第75 回応物秋季学術講演会 18p-A22-14. [2] T. Kamimura et al., Appl. Phys. Lett. 104, 192104 (2014).

Al₂O₃/Ga₂O₃ interface. (a) $(\overline{2}01)$ substrate, (b) (010) substrate.

Fig. 3 Interface state densities estimated by Hi-Lo method.

Au/Al₂O₃/Ga₂O₃ MOS

capacitor.