マルチフェロイック BiFe_{1-x}Co_xO₃薄膜のスピン構造変化

Observation of the Spin Structure Change in Multiferroic BiFe_{1-x}Co_xO₃ Thin Films

^〇川邊諒¹・北條元¹・山本孟¹・清水啓佑¹・壬生攻²・東正樹¹(1. 東工大応セラ、2. 名工大工)

[°]Ryo Kawabe¹, Hajime Hojo¹, Hajime Yamamoto¹, Keisuke Shimizu¹, Ko Mibu², M. Azuma¹

(1.Tokyo Institute of Technology., 2.Nagoya Institute of Technology.)

E-mail: kawabe.r.aa@m.titech.ac.jp

【緒言】 強誘電性と磁性を併せ持つマルチフェロイック物質は、省電力磁気メモリーデバイス応用への期 待などから盛んに研究されている。BiFeO₃は代表的なマルチフェロイック物質であり、G型反強磁性秩序に 重畳したサイクロイドスピン構造を持つ。このスピン構造はTbMnO₃等で報告されているもの^[1]と同じであ り、イオン変位による物に加えて、逆 DM 相互作用による電気分極が存在する。Fe の一部を Co で置換した BiFe_{0.8}Co_{0.2}O₃は、低温ではサイクロイドスピン構造を持つが、120 K以上では 0.03 µ_B/f.u.の弱強磁性成分を 持つ、キャントしたコリニアなスピン構造へ転移することが、中性子線回折実験により発見された^[2]。スピ ンキャントは BiFe_{1.x}Co_xO₃の極性構造歪み由来であると考えられるため、電気分極の反転により磁化反転が 起こると期待される。しかし、現在得られているバルク試料では、結晶粒界に生じるリーク電流の影響など により電場の印加は困難であるため、単結晶又は薄膜試料の作製が求められる。

【実験方法】 パルスレーザー堆積法を用いて BiFe_{1-x}Co_xO₃ (x = 0.10, 0.15, 0.20)エピタキシャル薄膜を作製し、 その結晶構造と電気的および磁気的特性を調べた。BiFeO₃薄膜のスピン構造は基板によるエピタキシャル歪 みに大きな影響を受けることが知られていることから^[3]、基板には、BiFe_{1-x}Co_xO₃と格子ミスマッチの小さい DyScO₃(110), GdScO₃(110)と、バルク試料と同様の菱面体晶構造が得られると期待できる SrTiO₃(111)を用い た。結晶構造評価は X 線回折(XRD)(リガク SmartLab)を用いて行った。磁気特性評価には超伝導量子干渉素 子(SQUID)(Quantum Design MPMS)を用いた。また、⁵⁷Fe メスバウアー分光法を用いてスピン構造の同定を行 った。

【結果と考察】 Figure 1 に GdScO₃ 基板、及び SrRuO₃/DyScO₃ 基板に作製した BiFe_{1-x}Co_xO₃ 薄膜の面外 XRD パターンを示す。全ての薄膜は単相のペロブスカイト構造であることが確認された。Figure 2 に BiFe_{0.85}Co_{0.15}O₃ 薄膜と、比較としてバルク BiFeO₃ および BiFe_{0.8}Co_{0.2}O₃ の室温でのメスバウアースペクトルを示す。バルク試料の結果より、サイクロイドスピン構造を有する BiFeO₃ ではスペクトルは左右非対称であ り、一方キャントしたコリニア構造を有する BiFe_{0.8}Co_{0.2}O₃ では左右対称となることがわかる。BiFe_{0.85}Co_{0.15}O₃ 薄膜では左右対称となったことから、スピン構造はキャントしたコリニアなものであることが示唆される。当日は、逆格子マップを用いた詳細な結晶構造解析の結果と、SQUID を用いた磁化測定、及び電気的特性 の測定結果についても報告する予定である。

【参考文献】

[1] T.Kimura et al., Nature, 426, 55 (2003)

Figure 1. XRD patterns of $BiFe_{1-x}Co_xO_3$ (*x* = 0.10, 0.15, 0.20) thin films on SrRuO₃(110)/DyScO₃(110) and GdScO₃(110).

Figure 2. 57 Fe Mössbauer spectra for bulk BiFeO₃ (top), bulk BiFe_{0.8}Co_{0.2}O₃ (middle) and BiFe_{0.85}Co_{0.15}O₃ thin film on GSO substrate (bottom).